Principles of Instrumental Analysis, 6th Edition
Principles of Instrumental Analysis, 6th Edition
6th Edition
ISBN: 9788131525579
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cenage Learning
Question
Book Icon
Chapter 2, Problem 2.17QAP
Interpretation Introduction

(a)

Interpretation:

Time constant for the circuit should be calculated.

Concept introduction:

The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.

Interpretation Introduction

(b)

Interpretation:

The current, voltage drops across the capacitor and the resistor during a charging cycle at given times should be calculated.

Concept introduction:

The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.

Ohm’s law:

Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.

V = IR

Connection between initial current and current across the capacitor (i) at given time during the charging is given by

i = Iinte-t/RT

The value of the voltage across the capacitor (Vc) at given time during the charging period can be given like this

Vc=Vs(1e(t/RC))

Vc = Voltage across the capacitor

Vs= Supply voltage

t = time

RC = time constant for RC circuit

Interpretation Introduction

(c)

Interpretation:

The current and voltage drops across the capacitor and the resistor during a discharging cycle at time 10 ms should be calculated.

Concept introduction:

The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.

Ohm’s law:

Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.

V = IR

The value of the voltage across the capacitor (Vc) at given time during the charging period can be given like this;

Vc=Vse(t/RC)

Vc = Voltage across the capacitor

Vs= Supply voltage

t = time

RC = time constant for RC circuit

Connection between initial current and current across the capacitor (i) at given time during the discharging is given by;

i = Iint(1-e-t/RT)

Blurred answer
Students have asked these similar questions
please provide the structure for this problem, thank you!
Draw the Fischer projection from the skeletal structure shown below. HO OH OH OH OH H Q Drawing Atoms, Bonds and Rings Charges I ☐ T HO H H OH HO I CH2OH H OH Drag H OH -CH2OH CHO -COOH Undo Reset Remove Done
please provide the structure for this problem, thank you
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Appl Of Ms Excel In Analytical Chemistry
Chemistry
ISBN:9781285686691
Author:Crouch
Publisher:Cengage