(a)
Interpretation:
The time it would take to discharge a 0.025 µF capacitor to 1% of its full charge through a resistance of 10 Mχ should be calculated.
Concept introduction:
The product of RC is referred to as time constant for the circuitand is a measure of the time required for a capacitor to chargeor discharge.
Capacitor is discharged to 1% of its full charge. Therefore, the value of charge at time ‘t’ can be related to the initial charge by following equation.
Time taken for the discharge of the capacitor can be calculated using following relationship;
(b)
Interpretation:
The time it would take to discharge a 0.025 µF capacitor to 1% of its full charge through a resistance of 1 Mχ should be calculated.
Concept introduction:
The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.
Capacitor is discharged to 1% of its full charge. Therefore, the value of charge at time ‘t’ can be related to the initial charge by following equation.
Time taken for the discharge of the capacitor can be calculated using following relationship;
(c)
Interpretation:
The time it would take to discharge a 0.025 µF capacitor to 1% of its full charge through a resistance of 1 kχ should be calculated.
Concept introduction:
The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.
Capacitor is discharged to 1% of its full charge. Therefore, the value of charge at time ‘t’ can be related to the initial charge by following equation.
Time taken for the discharge of the capacitor can be calculated using following relationship;
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Principles of Instrumental Analysis, 6th Edition
- Q1. (a) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH3. Use curved arrows to show the electron movement. (b) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH4*. Use curved arrows to show the electron movement.arrow_forwardWhich is NOT the typical size of a bacteria? 1000 nm 0.001 mm 0.01 mm 1 umarrow_forwardNonearrow_forward
- Show work. don't give Ai generated solutionarrow_forwardPart II. count the expected number of signals in the 1H-NMR spectrum of these compounds HO 0 одев * Cl -cl "D"arrow_forwardPart I. Create a splitting tree diagram to predict the multiplet pattern of proton Hb in the compound below: 3 (Assume that "Jab >>> ³JbC) Ha Hb He он Ha NH2 Ha HCarrow_forward
- SH 0 iq noitzouDarrow_forwardNonearrow_forward+ HCl →? Draw the molecule on the canvas by choosing buttons from the Tools (for bonas), Atoms and Advanced Template toolbars. The single bond is active by default. + M C + H± 2D EXP. CONT. K ? L 1 H₁₂C [1] A HCN O S CH3 CH 3 CI Br HC H₂ CH CH CH3 - P Farrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY