
(a)
Interpretation:
Time constant for the circuit should be calculated.
Concept introduction:
The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.
(b)
Interpretation:
The current, voltage drops across the capacitor and the resistor during a charging cycle at given times should be calculated.
Concept introduction:
The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.
Ohm’s law:
Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.
V = IR
Connection between initial current and current across the capacitor (i) at given time during the charging is given by
The value of the voltage across the capacitor (Vc) at given time during the charging period can be given like this:
Vc = Voltage across the capacitor
Vs= Supply voltage
t = time
RC = time constant for RC circuit
(c)
Interpretation:
The current and voltage drops across the capacitor and the resistor during a discharging cycle at time 10 ms should be calculated.
Concept introduction:
The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.
Ohm’s law:
Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.
V = IR
The value of the voltage across the capacitor (Vc) at given time during the charging period can be given like this:
Vc = Voltage across the capacitor
Vs= Supply voltage
t = time
RC = time constant for RC circuit
Connection between initial current and current across the capacitor (i) at given time during the discharging is given by

Want to see the full answer?
Check out a sample textbook solution
Chapter 2 Solutions
Principles of Instrumental Analysis
- Part D: Draw the Structural Formula for 4-ethyl-2-methylhexane Part E. Draw the Structural Formula for 1-chloro-3,3-diethylpentane (Chloro = Cl)arrow_forwardPart B: The line formula for a branched alkane is shown below. a. What is the molecular formula of this compound? Number of C. Number of H b. How many carbon atoms are in the longest chain? c. How many alkyl substituents are attached to this chain?arrow_forward24. What is the major product for the following reaction? Mg J. H.C CH H,C- Then H₂O OH Br C HO E HO H.C CH H.C- CH₂ CH₂ All of these are possiblearrow_forward
- structures. Explain why the major product(s) are formed over the minor product(s) using the Draw the major and product and the complete mechanism for all products with all resonance mechanism/resonance structures of the major and minor products in your explanation. HONO2 H2SO4arrow_forward#1 (a). Provide the expected product for the following reaction of A to B by indicating what the product is after step 1 (call this "81") and after step 2 (call this product "B2"). Give a complete mechanism for the transformation of compound A into compound B showing all intermediates, resonance structures, stereochemistry and electron movements 1. Et-MgBr 2. Me-Br B #1 (b). Compound A can be prepared in one step from an alkene starting material. Provide the structure a and the reaction conditions required to convert it to compound A The starting alkenearrow_forwardThe line formula for a branched alkene is shown below. 2 i. What is the molecular formula of this compound? Count number of C and H ii. How many carbon atoms are in the longest chain, ignoring the double bond? iii. What is the longest chain incorporating both carbons of the double bond? iv. How many substituents are on this chain? v. Give the IUPAC name for this compoundarrow_forward
- give the products for each of the followingarrow_forwardProvide the products and/or reagents for the following transformations. NaOMe HCl/EtOH OH NaOMe CI Show the product for the formation of the ketal given below for the transformation, showing all intermediates and resonance structures would be required to transform the ketal back to the starting ketone and then the mechanism What reagents/conditions HCI EtOH (excess)arrow_forwardMake meta-dibromobenze from nitrobenzene using amine reactions. *see imagearrow_forward
- Provide the structure of the expected major and minor (if any) products for each reaction. Clearly indicate stereochemistry where warranted. + + heat heat 이요 HNO3 1. AlCl3 2. H₂O H2SO4 1. AlCl3arrow_forward) Give the mechanism for the acid catalyzed hydrolysis of the following to the corresponding carboxylic acid. Show all intermediates and resonance structures N H+, H2O (excess)arrow_forward# 2. Drow full structures of the organic product expected in each of the following reactions. Draw the appropriate stereoisomer where warranted! Tos Cl O C NaCN PCC శ్రీ CI TSCI Pyridine H₂CrO4 PBrj Pyridine NaCNarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning


