ELEM.PRIN.OF CHEM.PROCESS-ACCESS
ELEM.PRIN.OF CHEM.PROCESS-ACCESS
4th Edition
ISBN: 9781119099918
Author: FELDER
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 2, Problem 2.16P
Interpretation Introduction

(a)

Interpretation:

To show: The given equation gives reasonable results for h=0, h=r and h=2r

Concept introduction:

The mathematical expression for the volume of benzene in the drum is given by:

V=L[r2cos1(rhr)(rh)r2(rh)2]

Where,

V = Volume of benzene L =Length of the drum r =Radius of the drum h =Level of the benzene in the drum

Interpretation Introduction

(b)

Interpretation:

The mass of the benzene in the tank for the given case.

Concept introduction:

The expression for the volume of benzene in the drum is given as,

   V=L[r2cos1(rhr)(rh)r2(rh)2]

Where,

V = Volume of benzene L = Length of the drum r = Radius of the drum h = Level of the benzene in the drum

In addition, Density is defined as,

ρ=mV

Where,

ρ=Densitym=Mass

V = volume

Interpretation Introduction

(c)

Interpretation:

A relationship between the mass of benzene and the liquid height of benzene in the tank by plotting graph between mass of benzene and level of benzene.

Concept introduction:

On combining the density formula and expression for the volume of benzene in the drum we get:

m=ρ×V=ρ×L[r2cos1(rhr)(rh)r2(rh)2]

Blurred answer
Students have asked these similar questions
#2 The isothermal gas-phase degradation reaction is given below. Pure ethane enters a flow reactor at 6 atm and 1100 K, with the pressure drop can be negligible. This reaction follows an elementary rate law. C2H6 → C2H4 + H2 a) Express the concentration of each species solely as a function of conversion. b) Write the reaction rate (the unit is mol/L-s) solely as a function of conversion (*rate constant k will be used in this mathematical expression). What is the unit of k. c) If this reaction is carried out in a constant volume batch reactor now, how to express the concentration of each species solely as a function of conversion?
#1 For the following liquid phase reaction, ethylene oxide reacts with water to form ethylene glycol in a CSTR. The entering concentrations of ethylene oxide and water are 16.13 mol/L and 55.5 mol/L, respectively. The reaction rate constant k = 0.1 L/mol·s at 300 K. This reaction follows an elementary rate law. Taking ethylene oxide as the limiting species (i.e., basis of the calculation). ན CH₂-OH | H2SO4 CH2-CH₂+H₂O CH₂-OH a) Express the concentration of each species solely as a function of conversion. b) Write the reaction rate solely as a function of conversion at 300 K.
#4 The gas phase reaction, as given below is carried out isothermally in a PFR with no pressure drop. The feed is equal molar in A and B, and the entering concentration of A is 0.1 mol/L. 2A + B → C a) What is the entering concentration of B? b) What are the concentrations of A, B, and C at 25% conversion of A? c) If at a particular conversion, the rate of formation of C is 2 mol/L-min, what is the rate of consumption of A at the same conversion?
Knowledge Booster
Background pattern image
Chemical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The