Concept explainers
(a)
Interpretation:
The ratio of the number of neutrons to a number of proton for
Concept introduction:
Atoms are neutral in nature. They consist of even smaller particles namely, protons, electrons, and neutrons. Protons have a positive charge on them. Electrons have a negative charge. Neutrons have no charge in them. Protons and neutrons make up the nucleus in the atoms whereas the electrons revolve around the nucleus.
The general representation for an atom is given as
The superscript in the formula of elements or atoms is the mass number. The mass number is the sum of protons and neutrons in the atom. The subscript in the formula represents the atomic number. The atomic number of an element or atom is the number of protons in that element or atom. The difference between the mass number and the number of protons gives the number of neutrons.
The formula to calculate the number of neutrons is,
The expression to calculate the ratio of
(b)
Interpretation:
The ratio of the number of neutrons to a number of proton for
Concept introduction:
Atoms are neutral in nature. They consist of even smaller particles namely, protons, electrons, and neutrons. Protons have a positive charge on them. Electrons have a negative charge. Neutrons have no charge in them. Protons and neutrons make up the nucleus in the atoms whereas the electrons revolve around the nucleus.
The general representation for an atom is given as
The superscript in the formula of elements or atoms is the mass number. The mass number is the sum of protons and neutrons in the atom. The subscript in the formula represents the atomic number. The atomic number of an element or atom is the number of protons in that element or atom. The difference between the mass number and the number of protons gives the number of neutrons.
The formula to calculate the number of neutrons is,
The expression to calculate the ratio of
(c)
Interpretation:
The ratio of the number of neutrons to a number of proton for
Concept introduction:
Atoms are neutral in nature. They consist of even smaller particles namely, protons, electrons, and neutrons. Protons have a positive charge on them. Electrons have a negative charge. Neutrons have no charge in them. Protons and neutrons make up the nucleus in the atoms whereas the electrons revolve around the nucleus.
The general representation for an atom is given as
The superscript in the formula of elements or atoms is the mass number. The mass number is the sum of protons and neutrons in the atom. The subscript in the formula represents the atomic number. The atomic number of an element or atom is the number of protons in that element or atom. The difference between the mass number and the number of protons gives the number of neutrons.
The formula to calculate the number of neutrons is,
The expression to calculate the ratio of
(d)
Interpretation:
The ratio of the number of neutrons to a number of proton for
Concept introduction:
Atoms are neutral in nature. They consist of even smaller particles namely, protons, electrons, and neutrons. Protons have a positive charge on them. Electrons have a negative charge. Neutrons have no charge in them. Protons and neutrons make up the nucleus in the atoms whereas the electrons revolve around the nucleus.
The general representation for an atom is given as
The superscript in the formula of elements or atoms is the mass number. The mass number is the sum of protons and neutrons in the atom. The subscript in the formula represents the atomic number. The atomic number of an element or atom is the number of protons in that element or atom. The difference between the mass number and the number of protons gives the number of neutrons.
The formula to calculate the number of neutrons is,
The expression to calculate the ratio of
(e)
Interpretation:
The number of neutrons, proton, and electron in
Concept introduction:
Atoms are neutral in nature. They consist of even smaller particles namely, protons, electrons, and neutrons. Protons have a positive charge on them. Electrons have a negative charge. Neutrons have no charge in them. Protons and neutrons make up the nucleus in the atoms whereas the electrons revolve around the nucleus.
The general representation for an atom is given as
The superscript in the formula of elements or atoms is the mass number. The mass number is the sum of protons and neutrons in the atom. The subscript in the formula represents the atomic number. The atomic number of an element or atom is the number of protons in that element or atom. The difference between the mass number and the number of protons gives the number of neutrons.
The formula to calculate the number of neutrons is,
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
CHEMISTRY:MOLECULAR...(LL) W/ALEKS
- 7. Calculate the following for a 1.50 M Ca(OH)2 solution. a. The concentration of hydroxide, [OH-] b. The concentration of hydronium, [H3O+] c. The pOH d. The pHarrow_forwardA first order reaction is 46.0% complete at the end of 59.0 minutes. What is the value of k? What is the half-life for this reaction? HOW DO WE GET THERE? The integrated rate law will be used to determine the value of k. In [A] [A]。 = = -kt What is the value of [A] [A]。 when the reaction is 46.0% complete?arrow_forward3. Provide the missing compounds or reagents. 1. H,NNH КОН 4 EN MN. 1. HBUCK = 8 хно Panely prowseful kanti-chuprccant fad, winddively, can lead to the crading of deduc din-willed, tica, The that chemooices in redimi Грин. " like (for alongan Ridovi MN نيا . 2. Cl -BuO 1. NUH 2.A A -BuOK THE CF,00,H Ex 5)arrow_forward
- 2. Write a complete mechanism for the reaction shown below. NaOCH LOCH₁ O₂N NO2 CH₂OH, 20 °C O₂N NO2arrow_forward4. Propose a synthesis of the target molecules from the respective starting materials. a) b) LUCH C Br OHarrow_forwardThe following mechanism for the gas phase reaction of H2 and ICI that is consistent with the observed rate law is: step 1 step 2 slow: H2(g) +ICI(g) → HCl(g) + HI(g) fast: ICI(g) + HI(g) → HCl(g) + |2(g) (1) What is the equation for the overall reaction? Use the smallest integer coefficients possible. If a box is not needed, leave it blank. + → + (2) Which species acts as a catalyst? Enter formula. If none, leave box blank: (3) Which species acts as a reaction intermediate? Enter formula. If none, leave box blank: (4) Complete the rate law for the overall reaction that is consistent with this mechanism. (Use the form k[A][B]"..., where '1' is understood (so don't write it) for m, n etc.) Rate =arrow_forward
- Please correct answer and don't use hand rating and don't use Ai solutionarrow_forward1. For each of the following statements, indicate whether they are true of false. ⚫ the terms primary, secondary and tertiary have different meanings when applied to amines than they do when applied to alcohols. • a tertiary amine is one that is bonded to a tertiary carbon atom (one with three C atoms bonded to it). • simple five-membered heteroaromatic compounds (e.g. pyrrole) are typically more electron rich than benzene. ⚫ simple six-membered heteroaromatic compounds (e.g. pyridine) are typically more electron rich than benzene. • pyrrole is very weakly basic because protonation anywhere on the ring disrupts the aromaticity. • thiophene is more reactive than benzene toward electrophilic aromatic substitution. • pyridine is more reactive than nitrobenzene toward electrophilic aromatic substitution. • the lone pair on the nitrogen atom of pyridine is part of the pi system.arrow_forwardThe following reactions are NOT ordered in the way in which they occur. Reaction 1 PhO-OPh Reaction 2 Ph-O -CH₂ heat 2 *OPh Pho -CH2 Reaction 3 Ph-O ⚫OPh + -CH₂ Reaction 4 Pho Pho + H₂C OPh + CHOPh H₂C -CH₂ Reactions 1 and 3 Reaction 2 O Reaction 3 ○ Reactions 3 and 4 ○ Reactions 1 and 2 Reaction 4 ○ Reaction 1arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY