Concept explainers
(a)
Interpretation:
The correct scenes that represent a mixture that fills a container is to be determined.
Concept introduction:
A mixture consists of a combination of two or more compounds or elements or compounds and elements which are physically intermingled. The components of a mixture are not
(b)
Interpretation:
The scenes that represent a substance that cannot be broken down into simpler ones, are to be determined.
Concept introduction:
An element can be defined as the simplest type of matter which is composed of only one kind of atom. Hence elements can be represented by symbols. Elements cannot be broken down into simpler substances by any chemical or physical means. Examples are carbon, hydrogen, oxygen, sulfur, chlorine, etc.
(c)
Interpretation:
The scenes that represent an element with very high resistance to flow are to be determined.
Concept introduction:
An element can be defined as the simplest type of matter which is composed of only one kind of atom. Hence elements can be represented by symbols. Elements cannot be broken down into simpler substances by any chemical or physical means. Examples are carbon, hydrogen, oxygen, sulfur, chlorine, etc.
(d)
Interpretation:
The scenes that represent a homogenous mixture, are to be determined
Concept introduction:
A mixture consists of a combination of two or more compounds or elements or compounds and elements which are physically intermingled. The components of a mixture are not chemically bonded to each other.
Mixtures can be classified as homogenous and heterogeneous mixtures. Homogenous mixtures are those which have a uniform composition. The components of a homogenous mixture cannot be seen separately through the eyes. Heterogeneous mixtures do not have a uniform composition. The components of a heterogeneous mixture can be seen separately and hence can be easily separated.
(e)
Interpretation:
The scenes that represent an element that conforms to the walls of its container and displays an upper surface are to be determined.
Concept introduction:
An element can be defined as the simplest type of matter which is composed of only one kind of atom. Hence elements can be represented by symbols. Elements cannot be broken down into simpler substances by any chemical or physical means. Examples are carbon, hydrogen, oxygen, sulfur, chlorine, etc.
(e)
Interpretation:
The scenes that represent an element that conforms to the walls of its container and displays an upper surface are to be determined.
Concept introduction:
An element can be defined as the simplest type of matter which is composed of only one kind of atom. Hence elements can be represented by symbols. Elements cannot be broken down into simpler substances by any chemical or physical means. Examples are carbon, hydrogen, oxygen, sulfur, chlorine, etc.
(f)
Interpretation:
The scenes that represent a gas that consists of diatomic particles are to be determined.
Concept introduction:
The matter is anything that has mass and occupies space. The three
Solids – Solids are those substances in which the constituent particles are tightly packed. Solids have a fixed shape and volume.
Liquids – Liquids are those substances in which the constituent particles are loosely packed compared to those of the solids but tighter than those of the gases. Liquids take the shape of the container they fill.
Gases – Gases are those substances in which the constituent particles are free to move around. Gases neither have a definite shape nor a definite volume.
(g)
Interpretation:
The scenes that represent a gas that consists of diatomic particles are to be determined.
Concept introduction:
The matter is anything that has mass and occupies space. The three states of matter are as follows:
Solids – Solids are those substances in which the constituent particles are tightly packed. Solids have a fixed shape and volume.
Liquids – Liquids are those substances in which the constituent particles are loosely packed compared to those of the solids but tighter than those of the gases. Liquids take the shape of the container they fill.
Gases – Gases are those substances in which the constituent particles are free to move around. Gases neither have a definite shape nor a definite volume.
(h)
Interpretation:
The scene that represents a substance with a
Concept introduction:
The law of definite composition - This law can be defined as; a particular compound maintains an exact universal proportion of elements in its composition, irrespective of the source. The proposal for this law was made by Joseph Proust.
(i)
Interpretation:
The scenes that represent a matter that can be separated into its component substances by physical means, are to be determined.
Concept introduction:
A mixture consists of a combination of two or more compounds or elements or compounds and elements which are physically intermingled. The components of a mixture are not chemically bonded to each other. The components of a mixture do not lose their individual identity. The components of a mixture are not chemically bonded to each other. Therefore, the mixture components can be separated using the physical methods.
(j)
Interpretation:
The scene that represents a heterogeneous mixture is to be determined.
Concept introduction:
A mixture consists of a combination of two or more compounds or elements or compounds and elements which are physically intermingled. The components of a mixture are not chemically bonded to each other.
Mixtures can be classified as homogenous and heterogeneous mixtures. Homogenous mixtures are those which have a uniform composition. The components of a homogenous mixture cannot be seen separately through the eyes. Heterogeneous mixtures do not have a uniform composition. The components of a heterogeneous mixture can be seen separately and hence can be easily separated.
(k)
Interpretation:
The scenes that represent matter that obeys the law of definite composition are to be determined.
Concept introduction:
The law of definite composition - This law can be defined as; a particular compound maintains an exact universal proportion of elements in its composition, irrespective of the source. The proposal for this law was made by Joseph Proust.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
CHEMISTRY:MOLECULAR...(LL) W/ALEKS
- 4. Propose a synthesis of the target molecules from the respective starting materials. a) b) LUCH C Br OHarrow_forwardThe following mechanism for the gas phase reaction of H2 and ICI that is consistent with the observed rate law is: step 1 step 2 slow: H2(g) +ICI(g) → HCl(g) + HI(g) fast: ICI(g) + HI(g) → HCl(g) + |2(g) (1) What is the equation for the overall reaction? Use the smallest integer coefficients possible. If a box is not needed, leave it blank. + → + (2) Which species acts as a catalyst? Enter formula. If none, leave box blank: (3) Which species acts as a reaction intermediate? Enter formula. If none, leave box blank: (4) Complete the rate law for the overall reaction that is consistent with this mechanism. (Use the form k[A][B]"..., where '1' is understood (so don't write it) for m, n etc.) Rate =arrow_forwardPlease correct answer and don't use hand rating and don't use Ai solutionarrow_forward
- 1. For each of the following statements, indicate whether they are true of false. ⚫ the terms primary, secondary and tertiary have different meanings when applied to amines than they do when applied to alcohols. • a tertiary amine is one that is bonded to a tertiary carbon atom (one with three C atoms bonded to it). • simple five-membered heteroaromatic compounds (e.g. pyrrole) are typically more electron rich than benzene. ⚫ simple six-membered heteroaromatic compounds (e.g. pyridine) are typically more electron rich than benzene. • pyrrole is very weakly basic because protonation anywhere on the ring disrupts the aromaticity. • thiophene is more reactive than benzene toward electrophilic aromatic substitution. • pyridine is more reactive than nitrobenzene toward electrophilic aromatic substitution. • the lone pair on the nitrogen atom of pyridine is part of the pi system.arrow_forwardThe following reactions are NOT ordered in the way in which they occur. Reaction 1 PhO-OPh Reaction 2 Ph-O -CH₂ heat 2 *OPh Pho -CH2 Reaction 3 Ph-O ⚫OPh + -CH₂ Reaction 4 Pho Pho + H₂C OPh + CHOPh H₂C -CH₂ Reactions 1 and 3 Reaction 2 O Reaction 3 ○ Reactions 3 and 4 ○ Reactions 1 and 2 Reaction 4 ○ Reaction 1arrow_forwardSelect all possible products from the following reaction: NaOH H₂O a) b) ОН HO O HO HO e) ОН f) O HO g) h) + OHarrow_forward
- 3. Draw diagrams to represent the conjugation in these molecules. Draw two types of diagram: a. Show curly arrows linking at least two different ways of representing the molecule b. Indicate with dotted lines and partial charges (where necessary) the partial double bond (and charge) distribution H₂N* H₂N -NH2arrow_forwardQuestion 2 of 25 point Question Attempt 3 of Ulimited Draw the structure for 3-chloro-4-ethylheptane. Part 2 of 3 Click and drag to start drawing a structure. Draw the structure for 1-chloro-4-ethyl-3-lodooctane. Click and drag to start drawing a structure. X G X B c Part 3 of 30 Draw the structure for (R)-2-chlorobutane. Include the stereochemistry at all stereogenic centers. Check Click and drag to start drawing a structure. G X A 。 MacBook Pro G P Save For Later Submit Assignment Privacyarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- In a silicon and aluminum alloy, with 12.6% silicon, what are the approximate percentages of the phases present in the constituent that is formed at the end of solidification? Temperature (°C) 1500 1000 L B+L 1415- α+L 577' 500 1.65 12.6 99.83 α+B B 0 Al 20 40 60 Weight percent silicon 80 Siarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY