
(a)
Interpretation:
The coloured boxes that represent four non-metal elements are to be identified.
Concept introduction:
The periodic table is an arrangement of elements according to their properties,
The characteristic properties of non-metals are as follows:
1. Non-metals, unlike metals, can be solid, liquid or gas.
2. Non-metal oxides are acidic in nature.
3. Non-metals are poor conductors of heat and electricity.
4. Non-metals have a tendency to gain electrons to form anions.
5. Non-metals are non-malleable.
6. Non-metals are not ductile.
7. Non-metals do not exhibit sonority.
(a)

Answer to Problem 2.135P
The four non-metal elements are represented by the black, red, green and purple boxes.
Explanation of Solution
In the periodic table, the non-metal elements are placed at the small upper-right portion. The coloured boxes present in the small upper-right region are red, black, green and purple. Hence, these coloured boxes represent the four non-metal elements.
The four non-metal elements are represented by the black, red, green and purple boxes.
(b)
Interpretation:
The coloured boxes that represent two metal elements are to be identified.
Concept introduction:
The periodic table is an arrangement of elements according to their properties, atomic number, and electronic configurations.
The characteristic properties of metals are as follows:
1. Metals are hard and shiny in appearance. Except for mercury, all metals are solid.
2. Metallic oxides are basic in nature.
3. Metals are good conductors of heat and electricity
4. Metals have a tendency to lose electrons to form cations.
5. Metals are malleable. They can be beaten into thin sheets
6. Metals are ductile. They can be drawn into wires.
7. Metals exhibit sonority.
(b)

Answer to Problem 2.135P
The two metal elements are represented by the brown and blue boxes.
Explanation of Solution
In the periodic table, the metal elements are placed at the large lower-left portion. The coloured boxes present in the large lower-left region are brown and blue. Hence, these coloured boxes represent the two metal elements.
The two metal elements are represented by the brown and blue boxes.
(c)
Interpretation:
The coloured boxes that represent three elements that are gaseous at room temperature are to be identified.
Concept introduction:
A periodic table is an arrangement of elements based on their atomic number, properties and electronic configuration. The table is arranged into groups and periods. The elements which are metallic in nature, occupy the large lower-left portion of the table. The non-metals occupy the small upper-right portion of the table. Metalloids like along the staircase line. Elements which appear in the same group have similar behaviour.
(c)

Answer to Problem 2.135P
The three elements that are gaseous at room temperature are represented by the red, green and purple boxes.
Explanation of Solution
All metals except mercury are solid at room temperature. The non-metal elements can be soft solids, liquids or gases. The non-metal elements are represented by the black, red green and purple boxes. The black box represents the element of carbon. Carbon is a solid element. The red, green and purple boxes represent the elements oxygen, chlorine and argon. At room temperature, oxygen, chlorine and argon exist in the gaseous form. Therefore, the red, green and purple boxes represent the elements that are gaseous at room temperature.
The three elements that are gaseous at room temperature are represented by the red, green and purple boxes.
(d)
Interpretation:
The coloured boxes that represent three elements that are solid at room temperature are to be identified.
Concept introduction:
A periodic table is an arrangement of elements based on their atomic number, properties and electronic configuration. The table is arranged into groups and periods. The elements which are metallic in nature, occupy the large lower-left portion of the table. The non-metals occupy the small upper-right portion of the table. Metalloids like along the staircase line. Elements which appear in the same group have similar behaviour.
(d)

Answer to Problem 2.135P
The three elements that are solid at room temperature are represented by the brown, blue and black boxes.
Explanation of Solution
All metals except mercury are solid at room temperature. Non-metals can be soft solids, liquids or gases. Metals are represented by the brown and blue boxes. The black box represents the carbon element. Carbon is a solid non-metal element. The red, green and purple boxes represent the elements oxygen, chlorine and argon. At room temperature, oxygen, chlorine and argon exist in the gaseous form. Therefore, the brown, blue and black boxes represent the elements that are solid at room temperature.
The three elements that are solid at room temperature are represented by the brown, blue and black boxes.
(e)
Interpretation:
A pair of elements that will form a covalent compound is to be determined.
Concept introduction:
Covalent compounds are formed by the interaction of two or more non-metal elements. In covalent compounds, the covalent bonds are formed by the sharing of electrons between the atoms instead of their transfer from one atom to another.
(e)

Answer to Problem 2.135P
Pair of elements that will form covalent compounds are red and black.
Explanation of Solution
An interaction between metals and non-metals leads to the formation of ionic bonds. The metal elements are represented by the brown and blue boxes. Hence the elements in the brown and blue boxes will not engage in covalent bonding. The non-metal elements are represented by the red, green, black and purple boxes. The purple box represents the noble gas argon. Argon is very stable and therefore, does not engage in compound formation. Hence, the only elements that engage in covalent bonding are represented by the red, green and black boxes.
The red and the black box elements are oxygen and carbon respectively. Carbon and oxygen can engage in multiple proportions
Pair of elements that will form covalent compounds are red and black.
(f)
Interpretation:
Another pair of elements that will likely form covalent compounds is to be determined.
Concept introduction:
Covalent compounds are formed by the interaction of two or more non-metal elements. In covalent compounds, the covalent bonds are formed by the sharing of electrons between the atoms instead of their transfer from one atom to another.
(f)

Answer to Problem 2.135P
Another pair of elements that will likely form covalent compounds are represented by the red and green boxes.
Explanation of Solution
The non-metal elements are represented by the red, green, black and purple boxes. The purple box represents the noble gas argon. Argon is very stable and therefore, does not engage in compound formation. Hence, the only elements that engage in covalent bonding are represented by the red, green and black boxes.
Apart from the pair of red and black box elements, the elements in the red and green boxes can also engage in covalent compound formation. The red box represents the element oxygen whereas the green box represents the element chlorine. Oxygen and chlorine can engage in multiple proportions
Another pair of elements that will likely form covalent compounds are represented by the red and green boxes.
(g)
Interpretation:
The coloured boxes that represent a pair of elements that will likely form an ionic compound with the formula
Concept introduction:
Ionic compounds are formed by the interaction of metal elements with non-metal elements. In an ionic bond formation, there is a transfer of electrons between atoms. The metal elements have a tendency to lose electrons in order to gain stability, whereas non-metals acquire stability by gaining the electrons. The ions thus formed attract each other due to strong electrostatic force between them to form ionic compounds.
(g)

Answer to Problem 2.135P
One of the pairs of the elements that will likely form ionic compounds is represented by the brown and green boxes.
Explanation of Solution
Ionic compounds are formed by the interaction of metals with non-metals. The element represented by the brown box is sodium
Sodium and chloride ions form ionic compound
In the compound
One of the pairs of the elements that will likely form ionic compounds is represented by the brown and green boxes.
(h)
Interpretation:
The coloured boxes that represent another pair of elements that will likely form an ionic compound with the formula
Concept introduction:
Ionic compounds are formed by the interaction of metal elements with non-metal elements. In an ionic bond formation, there is a transfer of electrons between atoms. The metal elements have a tendency to lose electrons in order to gain stability, whereas non-metals acquire stability by gaining the electrons. The ions thus formed attract each other due to strong electrostatic force between them to form ionic compounds.
(h)

Answer to Problem 2.135P
The coloured boxes that represent another pair of elements that will form an ionic compound with the formula
Explanation of Solution
The coloured boxes red and blue represent the elements of oxygen and barium respectively. The ionization of oxygen and barium lead to the formation of oxide and barium ions
The coloured boxes that represent another pair of elements that will form an ionic compound are blue and red.
(i)
Interpretation:
The coloured boxes that represent a pair of elements that will likely form an ionic compound with the formula
Concept introduction:
Ionic compounds are formed by the interaction of metal elements with non-metal elements. In an ionic bond formation, there is a transfer of electrons between atoms. The metal elements have a tendency to lose electrons in order to gain stability, whereas non-metals acquire stability by gaining the electrons. The ions thus formed attract each other due to strong electrostatic force between them to form ionic compounds.
(i)

Answer to Problem 2.135P
The coloured boxes that represent the elements that will form an ionic compound with the formula
Explanation of Solution
For an ionic compound to have a formula of
The brown and the red boxes represent the elements sodium and oxygen respectively. Sodium and oxygen ionize to form
The coloured boxes that represent the elements that will form an ionic compound with the formula
(j)
Interpretation:
The coloured boxes that represent a pair of elements that will likely form an ionic compound with the formula
Concept introduction:
Ionic compounds are formed by the interaction of metal elements with non-metal elements. In an ionic bond formation, there is a transfer of electrons between atoms. The metal elements have a tendency to lose electrons in order to gain stability, whereas non-metals acquire stability by gaining the electrons. The ions thus formed attract each other due to strong electrostatic force between them to form ionic compounds.
(j)

Answer to Problem 2.135P
The coloured boxes that represent the elements that will form an ionic compound with the formula
Explanation of Solution
For an ionic compound to have a formula of
The blue and the green boxes represent the elements barium and chlorine respectively. Barium and chlorine ionize to form
The coloured boxes that represent the elements that will form an ionic compound with the formula
(k)
Interpretation:
The coloured box that represents an element that forms no compound is to be determined.
Concept introduction:
A periodic table is an arrangement of elements based on their atomic number, properties and electronic configuration. The table is arranged into groups and periods. The elements which are metallic in nature, occupy the large lower-left portion of the table. The non-metals occupy the small upper-right portion of the table. Metalloids like along the staircase line. Elements which appear in the same group have similar behaviour.
(k)

Answer to Problem 2.135P
The coloured box that represents an element that forms no compound is purple.
Explanation of Solution
The coloured box purple represents the element argon. Argon is a noble gas element. Noble gases have high stability due to their completely filled shells. Hence noble gases do not gain or lose electrons. Hence the coloured box that represents an element that forms no compound is purple.
The coloured box that represents an element that forms no compound is purple.
(l)
Interpretation:
The coloured boxes that represent a pair of elements whose compounds exhibit the law of multiple proportions are to be determined.
Concept introduction:
Law of multiple proportions states that, if two elements can combine to form more than one compound, the masses of one element that combines with a fixed mass of the other element are in the ratio of small whole numbers.
(l)

Answer to Problem 2.135P
The pairs of coloured boxes that represent elements whose compounds exhibit the law of multiple proportions are, black and red, red and green, black and green, brown and red and blue and red.
Explanation of Solution
The pair of black and red box represent the elements of carbon and oxygen. The two common compounds with multiple proportions formed by them are
The pair of red and green box represents the elements of oxygen and chlorine. The common compounds of oxygen and chlorine, in which both the elements are in different proportions are,
The pair of black and green box represent the elements of carbon and chlorine. The common compounds of carbon and chlorine in which both the elements are in different proportions are
The pair of brown and red box represent the elements of sodium and oxygen respectively. The common compounds of sodium and oxygen in which both the elements are in different proportions are
The pair of blue and red box represent the elements barium and oxygen respectively. The common compounds of barium and oxygen in which both the elements are in different proportions are
The pairs of coloured boxes that represent elements whose compounds exhibit the law of multiple proportions are, black and red, red and green, black and green, brown and red and blue and red.
Want to see more full solutions like this?
Chapter 2 Solutions
CHEMISTRY >CUSTOM<
- Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction LiNO3arrow_forwardAn unknown weak acid with a concentration of 0.410 M has a pH of 5.600. What is the Ka of the weak acid?arrow_forward(racemic) 19.84 Using your reaction roadmaps as a guide, show how to convert 2-oxepanone and ethanol into 1-cyclopentenecarbaldehyde. You must use 2-oxepanone as the source of all carbon atoms in the target molecule. Show all reagents and all molecules synthesized along the way. & + EtOH H 2-Oxepanone 1-Cyclopentenecarbaldehydearrow_forward
- R₂ R₁ R₁ a R Rg Nu R₂ Rg R₁ R R₁₂ R3 R R Nu enolate forming R₁ R B-Alkylated carbonyl species or amines Cyclic B-Ketoester R₁₁ HOB R R₁B R R₁₂ B-Hydroxy carbonyl R diester R2 R3 R₁ RB OR R₂ 0 aB-Unsaturated carbonyl NaOR Aldol HOR reaction 1) LDA 2) R-X 3) H₂O/H₂O ketone, aldehyde 1) 2°-amine 2) acid chloride 3) H₂O'/H₂O 0 O R₁ R₁ R R₁ R₁₂ Alkylated a-carbon R₁ H.C R₁ H.C Alkylated methyl ketone acetoacetic ester B-Ketoester ester R₁ HO R₂ R B-Dicarbonyl HO Alkylated carboxylic acid malonic ester Write the reagents required to bring about each reaction next to the arrows shown. Next, record any regiochemistry or stereochemistry considerations relevant to the reaction. You should also record any key aspects of the mechanism, such as forma- tion of an important intermediate, as a helpful reminder. You may want to keep track of all reactions that make carbon-carbon bonds, because these help you build large molecules from smaller fragments. This especially applies to the reactions in…arrow_forwardProvide the reasonable steps to achieve the following synthesis.arrow_forwardIdentify which compound is more acidic. Justify your choice.arrow_forward
- Provide the reasonable steps to achieve the following synthesis.arrow_forwardWhen anisole is treated with excess bromine, the reaction gives a product which shows two singlets in 1H NMR. Draw the product.arrow_forward(ii) Draw a reasonable mechanism for the following reaction: CI NaOH heat OH (hint: SNAr Reaction) :arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





