
Concept explainers
(a)
Interpretation:
The correct scenes that represent a mixture that fills a container is to be determined.
Concept introduction:
A mixture consists of a combination of two or more compounds or elements or compounds and elements which are physically intermingled. The components of a mixture are not
(b)
Interpretation:
The scenes that represent a substance that cannot be broken down into simpler ones, are to be determined.
Concept introduction:
An element can be defined as the simplest type of matter which is composed of only one kind of atom. Hence elements can be represented by symbols. Elements cannot be broken down into simpler substances by any chemical or physical means. Examples are carbon, hydrogen, oxygen, sulfur, chlorine, etc.
(c)
Interpretation:
The scenes that represent an element with very high resistance to flow are to be determined.
Concept introduction:
An element can be defined as the simplest type of matter which is composed of only one kind of atom. Hence elements can be represented by symbols. Elements cannot be broken down into simpler substances by any chemical or physical means. Examples are carbon, hydrogen, oxygen, sulfur, chlorine, etc.
(d)
Interpretation:
The scenes that represent a homogenous mixture, are to be determined
Concept introduction:
A mixture consists of a combination of two or more compounds or elements or compounds and elements which are physically intermingled. The components of a mixture are not chemically bonded to each other.
Mixtures can be classified as homogenous and heterogeneous mixtures. Homogenous mixtures are those which have a uniform composition. The components of a homogenous mixture cannot be seen separately through the eyes. Heterogeneous mixtures do not have a uniform composition. The components of a heterogeneous mixture can be seen separately and hence can be easily separated.
(e)
Interpretation:
The scenes that represent an element that conforms to the walls of its container and displays an upper surface are to be determined.
Concept introduction:
An element can be defined as the simplest type of matter which is composed of only one kind of atom. Hence elements can be represented by symbols. Elements cannot be broken down into simpler substances by any chemical or physical means. Examples are carbon, hydrogen, oxygen, sulfur, chlorine, etc.
(e)
Interpretation:
The scenes that represent an element that conforms to the walls of its container and displays an upper surface are to be determined.
Concept introduction:
An element can be defined as the simplest type of matter which is composed of only one kind of atom. Hence elements can be represented by symbols. Elements cannot be broken down into simpler substances by any chemical or physical means. Examples are carbon, hydrogen, oxygen, sulfur, chlorine, etc.
(f)
Interpretation:
The scenes that represent a gas that consists of diatomic particles are to be determined.
Concept introduction:
The matter is anything that has mass and occupies space. The three
Solids – Solids are those substances in which the constituent particles are tightly packed. Solids have a fixed shape and volume.
Liquids – Liquids are those substances in which the constituent particles are loosely packed compared to those of the solids but tighter than those of the gases. Liquids take the shape of the container they fill.
Gases – Gases are those substances in which the constituent particles are free to move around. Gases neither have a definite shape nor a definite volume.
(g)
Interpretation:
The scenes that represent a gas that consists of diatomic particles are to be determined.
Concept introduction:
The matter is anything that has mass and occupies space. The three states of matter are as follows:
Solids – Solids are those substances in which the constituent particles are tightly packed. Solids have a fixed shape and volume.
Liquids – Liquids are those substances in which the constituent particles are loosely packed compared to those of the solids but tighter than those of the gases. Liquids take the shape of the container they fill.
Gases – Gases are those substances in which the constituent particles are free to move around. Gases neither have a definite shape nor a definite volume.
(h)
Interpretation:
The scene that represents a substance with a
Concept introduction:
The law of definite composition - This law can be defined as; a particular compound maintains an exact universal proportion of elements in its composition, irrespective of the source. The proposal for this law was made by Joseph Proust.
(i)
Interpretation:
The scenes that represent a matter that can be separated into its component substances by physical means, are to be determined.
Concept introduction:
A mixture consists of a combination of two or more compounds or elements or compounds and elements which are physically intermingled. The components of a mixture are not chemically bonded to each other. The components of a mixture do not lose their individual identity. The components of a mixture are not chemically bonded to each other. Therefore, the mixture components can be separated using the physical methods.
(j)
Interpretation:
The scene that represents a heterogeneous mixture is to be determined.
Concept introduction:
A mixture consists of a combination of two or more compounds or elements or compounds and elements which are physically intermingled. The components of a mixture are not chemically bonded to each other.
Mixtures can be classified as homogenous and heterogeneous mixtures. Homogenous mixtures are those which have a uniform composition. The components of a homogenous mixture cannot be seen separately through the eyes. Heterogeneous mixtures do not have a uniform composition. The components of a heterogeneous mixture can be seen separately and hence can be easily separated.
(k)
Interpretation:
The scenes that represent matter that obeys the law of definite composition are to be determined.
Concept introduction:
The law of definite composition - This law can be defined as; a particular compound maintains an exact universal proportion of elements in its composition, irrespective of the source. The proposal for this law was made by Joseph Proust.

Want to see the full answer?
Check out a sample textbook solution
Chapter 2 Solutions
Chemistry: The Molecular Nature of Matter and Change
- Draw the Michael Adduct and the final product of the Robinson annulation reaction. Ignore inorganic byproducts.arrow_forwardDraw the Michael adduct and final product of the Robinson annulation reaction. Ignore inorganic byproductsarrow_forwardPost Lab Questions. 1) Draw the mechanism of your Diels-Alder cycloaddition. 2) Only one isomer of product is formed in the Diels-Alder cycloaddition. Why? 3) Imagine that you used isoprene as diene - in that case you don't have to worry about assigning endo vs exo. Draw the "endo" and "exo" products of the Diels-Alder reaction between isoprene and maleic anhydride, and explain why the distinction is irrelevant here. 4) This does not hold for other dienes. Draw the exo and endo products of the reaction of cyclohexadiene with maleic anhydride. Make sure you label your answers properly as endo or exo. 100 °C Xylenes ??? 5) Calculate the process mass intensity for your specific reaction (make sure to use your actual amounts of reagent).arrow_forward
- Indicate the product(s) A, B C and D that are formed in the reaction: H + NH-NH-CH [A+B] [C+D] hydrazonesarrow_forwardHow can you prepare a 6 mL solution of 6% H2O2, if we have a bottle of 30% H2O2?arrow_forwardHow many mL of H2O2 from the 30% bottle must be collected to prepare 6 mL of 6% H2O2.arrow_forward
- Indicate the product(s) B and C that are formed in the reaction: HN' OCH HC1 B + mayoritario C minoritario OCH3arrow_forwardIndicate the product(s) that are formed in the reaction: NH-NH, OCH3 -H₂O OCH3arrow_forward21.38 Arrange the molecules in each set in order of increasing acidity (from least acidic to most acidic). OH OH SH NH2 8 NH3 OH (b) OH OH OH (c) & & & CH3 NO2 21.39 Explain the trends in the acidity of phenol and the monofluoro derivatives of phenol. OH OH OH OH PK 10.0 PK 8.81 PK 9.28 PK 9.81arrow_forward
- identify which spectrum is for acetaminophen and which is for phenacetinarrow_forwardThe Concept of Aromaticity 21.15 State the number of 2p orbital electrons in each molecule or ion. (a) (b) (e) (f) (c) (d) (h) (i) DA (k) 21.16 Which of the molecules and ions given in Problem 21.15 are aromatic according to the Hückel criteria? Which, if planar, would be antiaromatic? 21.17 Which of the following structures are considered aromatic according to the Hückel criteria? ---0-0 (a) (b) (c) (d) (e) (h) H -H .8.0- 21.18 Which of the molecules and ions from Problem 21.17 have electrons donated by a heteroatom?arrow_forward1. Show the steps necessary to make 2-methyl-4-nonene using a Wittig reaction. Start with triphenylphosphine and an alkyl halide. After that you may use any other organic or inorganic reagents. 2. Write in the product of this reaction: CH3 CH₂ (C6H5)₂CuLi H₂O+arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





