Concept explainers
A sample of naturally occurring silicon consists of
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
LCPO CHEMISTRY W/MODIFIED MASTERING
- Neon has three stable isotopes, one with a small abundance. What are the abundances of the other two isotopes? 20Ne, mass = 19.992435 u; percent abundance = ? 21Ne mass = 20.993843 u; percent abundance = 027% 22Ne mass = 21.991383 u: percent abundance = ?arrow_forwardThe mass spectrum of phosphoryl chloride. POF3, is illustrated here. (a) Identify the cation fragment at a m/Z ratio of 85. (b) Identify the cation fragment at a m/Z ratio of 69. (c) Which two peaks in the mass spectrum provide evidence that the oxygen atom is connected to the phosphorus atom and is not connected to any of the three fluorine atoms?arrow_forwardGallium arsenide, GaAs, has gained widespread use in semiconductor devices that convert light and electrical signals in fiber-optic communications systems. Gallium consists of 60.% 69Ga and 40.% 71Ga. Arsenic has only one naturally occurring isotope, 75As. Gallium arsenide is a polymeric material, but its mass spectrum shows fragments with the formulas GaAs and Ga2As2. What would the distribution of peaks look like for these two fragments?arrow_forward
- A sample of metallic element X, weighing 3.177 g, combines with 0.6015 L of O2 gas (at normal pressure and 20.0C) to form the metal oxide with the formula XO. If the density of O2 gas under these conditions is 1.330 g/L, what is the mass of this oxygen? The atomic weight of oxygen is 15.999 amu. What is the atomic weight of X? What is the identity of X?arrow_forward3.116 The simplest approximate chemical formula for the human body could be written as C728H4850O1970N104Ca24P16K4S4Na3Cl2Mg. Based on this formula, describe how you would rank by mass the ten most abundant elements in the human body.arrow_forwardWhat are the live most abundant elements (by mass) in the earth’s crust, oceans, and atmosphere?arrow_forward
- 2.75 Chlorine has only two isotopes, one with mass 35 and the other with mass 37. One is present at roughly 75% abundance, and the atomic weight of chlorine on a periodic table is 35.45. Which must be the correct mass spectrum for chlorine?arrow_forwardThe age of the universe is unknown, but some conclude from measuring Hubbles constant that the age is about 18 billion years old, which is about four times the age of Earth. If so, calculate the age of the universe in seconds. If you had a sample of carbon with the same number of carbon atoms as there have been seconds since the universe began, determine whether you could measure this sample on a laboratory balance that can detect masses as small as 0.1 mg.arrow_forwardThe element bromine is Br2, so the mass of a Br2 molecule is the sum of the mass of its two atoms. Bromine has two isotopes. The mass spectrum of Br2 produces three peaks with relative masses of 157.836, 159.834, and 161.832, and relative heights of 6.337, 12.499. and 6.164, respectively. (a) What isotopes of bromine are present in each of the three peaks? (b) What is the mass of each bromine isotope? (c) What is the average atomic mass of bromine? (d) What is the abundance of each of the two bromine isotopes?arrow_forward
- A sample of metallic element X, weighing 4.315 g, combines with 0.4810 L of Cl2 gas (at normal pressure and 20.0C) to form the metal chloride with the formula XCl. If the density of Cl2 gas under these conditions is 2.948 g/L, what is the mass of the chlorine? The atomic weight of chlorine is 35.45 amu. What is the atomic weight of X? What is the identity of X?arrow_forwardhe vigorous reaction between aluminum and iodine gives the balanced equation: :math>2Al(s)+3I2(s)2AlI2(s). mg src=Images/HTML_99425-9-2QAP_image001.jpg alt="" align="top"/> at do the coefficients in this balanced chemical equation tell us about the proportions in which these substances react on a macroscopic (mole) basis?arrow_forwardConsider the following data for three binary compounds of hydrogen and nitrogen: %H (by Mass) %N (by Mass) I 17.75 82.25 II 12.58 87.42 III 2.34 97.66 When 1.00 L of each gaseous compound is decomposed to its elements, the following volumes of H2(g) and N2(g) are obtained: H2(L) N2(L) I 1.50 0.50 II 2.00 1.00 III 0.50 1.50 Use these data to determine the molecular formulas of compounds I, II, and III and to determine the relative values for the atomic masses of hydrogen and nitrogen.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning