(a)
Interpretation:
The systematic name for blue vitriol
Concept introduction:
The general rules for writing the systematic names of ionic compounds are as follows:
1) In binary ionic compounds, the name of the metal is written as the original name whereas the name of the non-metal has the root word with the suffix
2) In metals that form more than one ion, the Latin root of the metal is followed by a suffix
3) In the family of two oxoanions, the ion with more oxygen atoms has the non-metal root and a suffix
4) For hydrated ionic compounds, the total number of water molecules are represented by the Greek numerical prefixes followed by the word hydrate.
(a)

Answer to Problem 2.110P
The systematic name for the compound
Explanation of Solution
The anion sulfate is a polyatomic anion and the charge on the sulfate ion is
The systematic name for the compound
(b)
Interpretation:
The systematic name for slaked lime
Concept introduction:
The general rules for writing the systematic names of ionic compounds are as follows:
1) In binary ionic compounds, the name of the metal is written as the original name whereas the name of the non-metal has the root word with the suffix
2) In metals that form more than one ion, the Latin root of the metal is followed by a suffix
3) In the family of two oxoanions, the ion with more oxygen atoms has the non-metal root and a suffix
4) For hydrated ionic compounds, the total number of water molecules are represented by the Greek numerical prefixes followed by the word hydrate.
(b)

Answer to Problem 2.110P
The systematic name for the compound
Explanation of Solution
The systematic name for the compound
(c)
Interpretation:
The systematic name for oil of vitriol
Concept introduction:
The general rules for naming oxoacids are as follows:
1) The suffix
2) The suffix
(c)

Answer to Problem 2.110P
The systematic name for oil of vitriol
Explanation of Solution
The systematic name for oil of vitriol
(d)
Interpretation:
The systematic name for washing soda
Concept introduction:
The general rules for writing the systematic names of ionic compounds are as follows:
1) In binary ionic compounds, the name of the metal is written as the original name whereas the name of the non-metal has the root word with the suffix
2) In metals that form more than one ion, the Latin root of the metal is followed by a suffix
3) In the family of two oxoanions, the ion with more oxygen atoms has the non-metal root and a suffix
4) For hydrated ionic compounds, the total number of water molecules are represented by the Greek numerical prefixes followed by the word hydrate.
(d)

Answer to Problem 2.110P
The systematic name for washing soda
Explanation of Solution
The systematic name for washing soda
(e)
Interpretation:
The systematic name for muriatic acid
Concept introduction:
The general formula to name binary acids is,
(e)

Answer to Problem 2.110P
The systematic name for muriatic acid
Explanation of Solution
The non-metal anion chloride has the root word chlor.
Substitute chlor for the non-metal root in equation (1).
Thus the name of the compound
The systematic name for muriatic acid
(f)
Interpretation:
The systematic name for Epsom salt
Concept introduction:
The general rules for writing the systematic names of ionic compounds are as follows:
1) In binary ionic compounds, the name of the metal is written as the original name whereas the name of the non-metal has the root word with the suffix
2) In metals that form more than one ion, the Latin root of the metal is followed by a suffix
3) In the family of two oxoanions, the ion with more oxygen atoms has the non-metal root and a suffix
4) For hydrated ionic compounds, the total number of water molecules are represented by the Greek numerical prefixes followed by the word hydrate.
(f)

Answer to Problem 2.110P
The systematic name for Epsom salt
Explanation of Solution
The symbol
The systematic name for Epsom salt
(g)
Interpretation:
The systematic name for chalk
Concept introduction:
The general rules for writing the systematic names of ionic compounds are as follows:
1) In binary ionic compounds, the name of the metal is written as the original name whereas the name of the non-metal has the root word with the suffix
2) In metals that form more than one ion, the Latin root of the metal is followed by a suffix
3) In the family of two oxoanions, the ion with more oxygen atoms has the non-metal root and a suffix
4) For hydrated ionic compounds, the total number of water molecules are represented by the Greek numerical prefixes followed by the word hydrate.
(g)

Answer to Problem 2.110P
The systematic name for chalk
Explanation of Solution
The symbol
The systematic name for chalk
(h)
Interpretation:
The systematic name for dry ice
Concept introduction:
The general rules for writing the systematic names for covalent compounds are as follows:
1) The element with the lower group number is named first in the systematic name. The element present in the higher group number is named second. While naming the element in the higher group number, the suffix
2) If both the elements belong to the same group, the element present in the higher period number is named first.
3) To indicate the total number of atoms of each element in the compound, the Greek numerical prefixes are used. For the element named first in the systematic name, the Greek numerical prefix is used only when more than one atoms of the element are present in the compound.
(h)

Answer to Problem 2.110P
The systematic name for dry ice
Explanation of Solution
The symbol
The systematic name for dry ice
(i)
Interpretation:
The systematic name for baking soda
Concept introduction:
The general rules for writing the systematic names of ionic compounds are as follows:
1) In binary ionic compounds, the name of the metal is written as the original name whereas the name of the non-metal has the root word with the suffix
2) In metals that form more than one ion, the Latin root of the metal is followed by a suffix
3) In the family of two oxoanions, the ion with more oxygen atoms has the non-metal root and a suffix
4) For hydrated ionic compounds, the total number of water molecules are represented by the Greek numerical prefixes followed by the word hydrate.
(i)

Answer to Problem 2.110P
The systematic name for baking soda
Explanation of Solution
The systematic name for baking soda
(j)
Interpretation:
The systematic name for lye
Concept introduction:
The general rules for writing the systematic names of ionic compounds are as follows:
1) In binary ionic compounds, the name of the metal is written as the original name whereas the name of the non-metal has the root word with the suffix
2) In metals that form more than one ion, the Latin root of the metal is followed by a suffix
3) In the family of two oxoanions, the ion with more oxygen atoms has the non-metal root and a suffix
4) For hydrated ionic compounds, the total number of water molecules are represented by the Greek numerical prefixes followed by the word hydrate.
(j)

Answer to Problem 2.110P
The systematic name for lye
Explanation of Solution
The systematic name for lye
Want to see more full solutions like this?
Chapter 2 Solutions
MCGRAW: CHEMISTRY THE MOLECULAR NATURE
- For each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. དྲ。 ✗MgBr ? O CI Will the first product that forms in this reaction create a new C-C bond? Yes No • ? Will the first product that forms in this reaction create a new CC bond? Yes No × : ☐ Xarrow_forwardPredict the major products of this organic reaction: OH NaBH4 H ? CH3OH Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. ☐ : Sarrow_forwardPredict the major products of this organic reaction: 1. LIAIHA 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. X : ☐arrow_forward
- For each reaction below, decide if the first stable organic product that forms in solution will create a new C - C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 tu ? ? OH Will the first product that forms in this reaction create a new CC bond? Yes No Will the first product that forms in this reaction create a new CC bond? Yes No C $ ©arrow_forwardAs the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C-C bond as its major product: 1. MgCl ? 2. H₂O* If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new CC bond. G marrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M NH4 Ksp Hg2Br2 = 5.6×10-23.arrow_forward
- give example for the following(by equation) a. Converting a water insoluble compound to a soluble one. b. Diazotization reaction form diazonium salt c. coupling reaction of a diazonium salt d. indacator properties of MO e. Diazotization ( diazonium salt of bromobenzene)arrow_forward2-Propanone and ethyllithium are mixed and subsequently acid hydrolyzed. Draw and name the structures of the products.arrow_forward(Methanesulfinyl)methane is reacted with NaH, and then with acetophenone. Draw and name the structures of the products.arrow_forward
- 3-Oxo-butanenitrile and (E)-2-butenal are mixed with sodium ethoxide in ethanol. Draw and name the structures of the products.arrow_forwardWhat is the reason of the following(use equations if possible) a.) In MO preperation through diazotization: Addition of sodium nitrite in acidfied solution in order to form diazonium salt b.) in MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at low pH c.) In MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at pH 4.5 d.) Avoiding not cooling down the reaction mixture when preparing the diazonium salt e.) Cbvcarrow_forwardA 0.552-g sample of an unknown acid was dissolved in water to a total volume of 20.0 mL. This sample was titrated with 0.1103 M KOH. The equivalence point occurred at 29.42 mL base added. The pH of the solution at 10.0 mL base added was 3.72. Determine the molar mass of the acid. Determine the Ka of the acid.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





