Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Chapter 2, Problem 1RQ
To determine
The reason that the linear ordinary
Expert Solution & Answer
Explanation of Solution
The most preferable method to solve the problem is the linear ordinary differential equations.
Because, it has a great advantage to solve the problems. It has rich solution structure.
There is a one principle to solve the model, that is superposition principle or linear principle. But this advantage is not there in nonlinear.
Also, the solution can be obtaining by adding the solutions or by multiplying the solutions with constant. This advantage is not there in nonlinear.
So, the linear ordinary differential equations preferable to nonlinear ones in modeling.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Let A be a vector space with basis 1, a, b. Which (if any) of the following rules
turn A into an algebra? (You may assume that 1 is a unit.)
(i) a² = a, b² = ab = ba = 0.
(ii) a²=b, b² = ab = ba = 0.
(iii) a²=b, b² = b, ab = ba = 0.
No chatgpt pls will upvote
= 1. Show
(a) Let G = Z/nZ be a cyclic group, so G = {1, 9, 92,...,g" } with g":
that the group algebra KG has a presentation KG = K(X)/(X” — 1).
(b) Let A = K[X] be the algebra of polynomials in X. Let V be the A-module
with vector space K2 and where the action of X is given by the matrix
Compute End(V) in the cases
(i) x = p,
(ii) xμl.
(67) ·
(c) If M and N are submodules of a module L, prove that there is an isomorphism
M/MON (M+N)/N.
(The Second Isomorphism Theorem for modules.)
You may assume that MON is a submodule of M, M + N is a submodule of L
and the First Isomorphism Theorem for modules.
Chapter 2 Solutions
Advanced Engineering Mathematics
Ch. 2.1 - Prob. 1PCh. 2.1 - Reduction. Show that F(y, y′, y″) = 0 can be...Ch. 2.1 - 3–10 REDUCTION OF ORDER
Reduce to first order and...Ch. 2.1 - 3–10 REDUCTION OF ORDER
Reduce to first order and...Ch. 2.1 - 3–10 REDUCTION OF ORDER
Reduce to first order and...Ch. 2.1 - 3–10 REDUCTION OF ORDER
Reduce to first order and...Ch. 2.1 - 3–10 REDUCTION OF ORDER
Reduce to first order and...Ch. 2.1 - 3–10 REDUCTION OF ORDER
Reduce to first order and...Ch. 2.1 - 3–10 REDUCTION OF ORDER
Reduce to first order and...Ch. 2.1 - 3–10 REDUCTION OF ORDER
Reduce to first order and...
Ch. 2.1 - 11–14 APPLICATIONS OF REDUCIBLE...Ch. 2.1 - 11–14 APPLICATIONS OF REDUCIBLE ODEs
12. Hanging...Ch. 2.1 - APPLICATIONS OF REDUCIBLE ODEs
13. Motion. If, in...Ch. 2.1 - Motion. In a straight-line motion, let the...Ch. 2.1 - GENERAL SOLUTION. INITIAL VALUE PROBLEM...Ch. 2.1 - GENERAL SOLUTION. INITIAL VALUE PROBLEM...Ch. 2.1 - GENERAL SOLUTION. INITIAL VALUE PROBLEM...Ch. 2.1 - GENERAL SOLUTION. INITIAL VALUE PROBLEM...Ch. 2.1 - GENERAL SOLUTION. INITIAL VALUE PROBLEM...Ch. 2.2 - 1–15 GENERAL SOLUTION
Find a general solution....Ch. 2.2 - 1–15 GENERAL SOLUTION
Find a general solution....Ch. 2.2 - 1–15 GENERAL SOLUTION
Find a general solution....Ch. 2.2 - Find a general solution. Check your answer by...Ch. 2.2 - Find a general solution. Check your answer by...Ch. 2.2 - Find a general solution. Check your answer by...Ch. 2.2 - 1–15 GENERAL SOLUTION
Find a general solution....Ch. 2.2 - Find a general solution. Check your answer by...Ch. 2.2 - 1–15 GENERAL SOLUTION
Find a general solution....Ch. 2.2 - GENERAL SOLUTION
Find a general solution. Check...Ch. 2.2 - 1–15 GENERAL SOLUTION
Find a general solution....Ch. 2.2 - 1–15 GENERAL SOLUTION
Find a general solution....Ch. 2.2 - Find a general solution. Check your answer by...Ch. 2.2 - Find a general solution. Check your answer by...Ch. 2.2 - Find a general solution. Check your answer by...Ch. 2.2 - 16–20 FIND AN ODE
for the given basis.
16.
Ch. 2.2 - 16–20 FIND AN ODE
for the given basis.
17.
Ch. 2.2 - 16–20 FIND AN ODE
for the given basis.
18.
Ch. 2.2 - 16–20 FIND AN ODE
for the given basis.
19.
Ch. 2.2 - 16–20 FIND AN ODE
for the given basis.
20.
Ch. 2.2 - Solve the IVP. Check that your answer satisfies...Ch. 2.2 - Solve the IVP. Check that your answer satisfies...Ch. 2.2 - Solve the IVP. Check that your answer satisfies...Ch. 2.2 - Solve the IVP. Check that your answer satisfies...Ch. 2.2 - Solve the IVP. Check that your answer satisfies...Ch. 2.2 - Solve the IVP. Check that your answer satisfies...Ch. 2.2 - Solve the IVP. Check that your answer satisfies...Ch. 2.2 - Solve the IVP. Check that your answer satisfies...Ch. 2.2 - INITIAL VALUES PROBLEMS
Solve the IVP. Check that...Ch. 2.2 - Solve the IVP. Check that your answer satisfies...Ch. 2.2 - LINEAR INDEPENDENCE is of basic importance, in...Ch. 2.2 - LINEAR INDEPENDENCE is of basic importance, in...Ch. 2.2 - Prob. 33PCh. 2.2 - Prob. 34PCh. 2.2 - Prob. 35PCh. 2.2 - LINEAR INDEPENDENCE is of basic importance, in...Ch. 2.2 - Instability. Solve y″ − y = 0 for the initial...Ch. 2.3 - Apply the given operator to the given functions....Ch. 2.3 - Apply the given operator to the given functions....Ch. 2.3 - Apply the given operator to the given functions....Ch. 2.3 - Prob. 4PCh. 2.3 - Apply the given operator to the given functions....Ch. 2.3 - Factor as in the text and solve.
(D2 + 4.00D +...Ch. 2.3 - Factor as in the text and solve.
(4D2 − I)y = 0
Ch. 2.3 - Factor as in the text and solve.
(D2 + 3I)y = 0
Ch. 2.3 - Factor as in the text and solve.
(D2 − 4.20D +...Ch. 2.3 - Factor as in the text and solve.
(D2 + 4.80D +...Ch. 2.3 - Factor as in the text and solve.
(D2 − 4.00D +...Ch. 2.3 - Prob. 12PCh. 2.3 - Linear operator. Illustrate the linearity of L in...Ch. 2.3 - Double root. If D2 + aD + bI has distinct roots μ...Ch. 2.3 - Definition of linearity. Show that the definition...Ch. 2.4 - Initial value problem. Find the harmonic motion...Ch. 2.4 - Frequency. If a weight of 20 nt (about 4.5 lb)...Ch. 2.4 - Frequency. How does the frequency of the harmonic...Ch. 2.4 - Initial velocity. Could you make a harmonic...Ch. 2.4 - Springs in parallel. What are the frequencies of...Ch. 2.4 - Spring in series. If a body hangs on a spring s1...Ch. 2.4 - Prob. 7PCh. 2.4 - Prob. 8PCh. 2.4 - HARMONIC OSCILLATIONS (UNDAMPED MOTION)
9....Ch. 2.4 - Prob. 11PCh. 2.4 - DAMPED MOTION
12. Overdamping. Show that in the...Ch. 2.4 - DAMPED MOTION
13. Initial value problem. Find the...Ch. 2.4 - DAMPED MOTION
14. Shock absorber. What is the...Ch. 2.4 - DAMPED MOTION
15. Frequency. Find an approximation...Ch. 2.4 - DAMPED MOTION
16. Maxima. Show that the maxima of...Ch. 2.4 - DAMPED MOTION
17. Underdamping. Determine the...Ch. 2.4 - DAMPED MOTION
18. Logarithmic decrement. Show that...Ch. 2.4 - DAMPED MOTION
19. Damping constant. Consider an...Ch. 2.5 - Prob. 1PCh. 2.5 - Find a real general solution. Show the details of...Ch. 2.5 - Find a real general solution. Show the details of...Ch. 2.5 - Find a real general solution. Show the details of...Ch. 2.5 - Find a real general solution. Show the details of...Ch. 2.5 - Find a real general solution. Show the details of...Ch. 2.5 - Find a real general solution. Show the details of...Ch. 2.5 - Find a real general solution. Show the details of...Ch. 2.5 - Prob. 9PCh. 2.5 - Find a real general solution. Show the details of...Ch. 2.5 - Find a real general solution. Show the details of...Ch. 2.5 - INITIAL VALUE PROBLEM
Solve and graph the...Ch. 2.5 - INITIAL VALUE PROBLEM
Solve and graph the...Ch. 2.5 - INITIAL VALUE PROBLEM
Solve and graph the...Ch. 2.5 - INITIAL VALUE PROBLEM
Solve and graph the...Ch. 2.5 - INITIAL VALUE PROBLEM
Solve and graph the...Ch. 2.5 - INITIAL VALUE PROBLEM
Solve and graph the...Ch. 2.5 - INITIAL VALUE PROBLEM
Solve and graph the...Ch. 2.5 - INITIAL VALUE PROBLEM
Solve and graph the...Ch. 2.6 - Derive (6*) from (6).
Ch. 2.6 - BASIS OF SOLUTIONS. WRONSKIAN
Find the Wronskian....Ch. 2.6 - BASIS OF SOLUTIONS. WRONSKIAN
Find the Wronskian....Ch. 2.6 - BASIS OF SOLUTIONS. WRONSKIAN
Find the Wronskian....Ch. 2.6 - BASIS OF SOLUTIONS. WRONSKIAN
Find the Wronskian....Ch. 2.6 - BASIS OF SOLUTIONS. WRONSKIAN
Find the Wronskian....Ch. 2.6 - BASIS OF SOLUTIONS. WRONSKIAN
Find the Wronskian....Ch. 2.6 - BASIS OF SOLUTIONS. WRONSKIAN
Find the Wronskian....Ch. 2.6 - Prob. 9PCh. 2.6 - ODE FOR GIVEN BASIS. WRONSKIAN. IVP
(a) Find a...Ch. 2.6 - ODE FOR GIVEN BASIS. WRONSKIAN. IVP
(a) Find a...Ch. 2.6 - ODE FOR GIVEN BASIS. WRONSKIAN. IVP
(a) Find a...Ch. 2.6 - ODE FOR GIVEN BASIS. WRONSKIAN. IVP
(a) Find a...Ch. 2.6 - ODE FOR GIVEN BASIS. WRONSKIAN. IVP
(a) Find a...Ch. 2.6 - ODE FOR GIVEN BASIS. WRONSKIAN. IVP
(a) Find a...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: GENERAL SOLUTION
Find...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: GENERAL SOLUTION
Find...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: GENERAL SOLUTION
Find...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: GENERAL SOLUTION
Find...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: GENERAL SOLUTION
Find...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: GENERAL SOLUTION
Find...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: GENERAL SOLUTION
Find...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: GENERAL SOLUTION
Find...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: GENERAL SOLUTION
Find...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: GENERAL SOLUTION
Find...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: IVPs
Solve the initial...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: IVPs
Solve the initial...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: IVPs
Solve the initial...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: IVPs
Solve the initial...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: IVPs
Solve the initial...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: IVPs
Solve the initial...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: IVPs
Solve the initial...Ch. 2.7 - NONHOMOGENEOUS LINEAR ODEs: IVPs
Solve the initial...Ch. 2.7 - CAS PROJECT. Structure of Solutions of Initial...Ch. 2.8 - Prob. 2PCh. 2.8 - Find the steady-state motion of the mass–spring...Ch. 2.8 - Find the steady-state motion of the mass–spring...Ch. 2.8 - Find the steady-state motion of the mass–spring...Ch. 2.8 - Prob. 6PCh. 2.8 - Prob. 7PCh. 2.8 - TRANSIENT SOLUTIONS
Find the transient motion of...Ch. 2.8 - TRANSIENT SOLUTIONS
Find the transient motion of...Ch. 2.8 - TRANSIENT SOLUTIONS
Find the transient motion of...Ch. 2.8 - TRANSIENT SOLUTIONS
Find the transient motion of...Ch. 2.8 - Prob. 12PCh. 2.8 - Prob. 13PCh. 2.8 - TRANSIENT SOLUTIONS
Find the transient motion of...Ch. 2.8 - TRANSIENT SOLUTIONS
Find the transient motion of...Ch. 2.8 - INITIAL VALUE PROBLEMS
Find the motion of the...Ch. 2.8 - Prob. 17PCh. 2.8 - INITIAL VALUE PROBLEMS
Find the motion of the...Ch. 2.8 - Prob. 19PCh. 2.8 - Prob. 20PCh. 2.8 - Prob. 21PCh. 2.8 - Prob. 22PCh. 2.8 - Prob. 24PCh. 2.9 - RC-Circuit. Model the RC-circuit in Fig. 64. Find...Ch. 2.9 - RC-Circuit. Solve Prob. 1 when E = E0 sin ωt and...Ch. 2.9 - RL-Circuit. Model the RL-circuit in Fig. 66. Find...Ch. 2.9 - RL-Circuit. Solve Prob. 3 when E = E0 sin ωt and...Ch. 2.9 - LC-Circuit. This is an RLC-circuit with negligibly...Ch. 2.9 - LC-Circuit. Find the current when L = 0.5 H, C =...Ch. 2.9 - Prob. 7PCh. 2.9 - 8–14 Find the steady-state current in the...Ch. 2.9 - 8–14 Find the steady-state current in the...Ch. 2.9 - 8–14 Find the steady-state current in the...Ch. 2.9 - 8–14 Find the steady-state current in the...Ch. 2.9 - Find the steady-state current in the RLC-circuit...Ch. 2.9 - Find the steady-state current in the RLC-circuit...Ch. 2.9 - Prob. 14PCh. 2.9 - Prob. 15PCh. 2.9 - Solve the initial value problem for the...Ch. 2.9 - Prob. 17PCh. 2.9 - Prob. 18PCh. 2.9 - Complex Solution Method. Solve , by substituting...Ch. 2.10 - Solve the given nonhomogeneous linear ODE by...Ch. 2.10 - Solve the given nonhomogeneous linear ODE by...Ch. 2.10 - Solve the given nonhomogeneous linear ODE by...Ch. 2.10 - Solve the given nonhomogeneous linear ODE by...Ch. 2.10 - Prob. 5PCh. 2.10 - Solve the given nonhomogeneous linear ODE by...Ch. 2.10 - Solve the given nonhomogeneous linear ODE by...Ch. 2.10 - Solve the given nonhomogeneous linear ODE by...Ch. 2.10 - Solve the given nonhomogeneous linear ODE by...Ch. 2.10 - Solve the given nonhomogeneous linear ODE by...Ch. 2.10 - Solve the given nonhomogeneous linear ODE by...Ch. 2.10 - Prob. 12PCh. 2.10 - Solve the given nonhomogeneous linear ODE by...Ch. 2 - Prob. 1RQCh. 2 - Prob. 2RQCh. 2 - By what methods can you get a general solution of...Ch. 2 - Prob. 4RQCh. 2 - Prob. 5RQCh. 2 - Prob. 6RQCh. 2 - Find a general solution. Show the details of your...Ch. 2 - Find a general solution. Show the details of your...Ch. 2 - Find a general solution. Show the details of your...Ch. 2 - Find a general solution. Show the details of your...Ch. 2 - Find a general solution. Show the details of your...Ch. 2 - Find a general solution. Show the details of your...Ch. 2 - Find a general solution. Show the details of your...Ch. 2 - Find a general solution. Show the details of your...Ch. 2 - Prob. 15RQCh. 2 - Prob. 16RQCh. 2 - Prob. 17RQCh. 2 - Find a general solution. Show the details of your...Ch. 2 - Solve the problem, showing the details of your...Ch. 2 - Solve the problem, showing the details of your...Ch. 2 - Solve the problem, showing the details of your...Ch. 2 - Solve the problem, showing the details of your...Ch. 2 - Find the steady-state current in the RLC-circuit...Ch. 2 - Find a general solution of the homogeneous linear...Ch. 2 - Find the steady-state current in the RLC-circuit...Ch. 2 - Find the current in the RLC-circuit in Fig. 71...Ch. 2 - Prob. 27RQCh. 2 - Prob. 28RQCh. 2 - Prob. 29RQCh. 2 - Prob. 30RQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Similar questions
- (a) Define the notion of an ideal I in an algebra A. Define the product on the quotient algebra A/I, and show that it is well-defined. (b) If I is an ideal in A and S is a subalgebra of A, show that S + I is a subalgebra of A and that SnI is an ideal in S. (c) Let A be the subset of M3 (K) given by matrices of the form a b 0 a 0 00 d Show that A is a subalgebra of M3(K). Ꮖ Compute the ideal I of A generated by the element and show that A/I K as algebras, where 0 1 0 x = 0 0 0 001arrow_forward(a) Let HI be the algebra of quaternions. Write out the multiplication table for 1, i, j, k. Define the notion of a pure quaternion, and the absolute value of a quaternion. Show that if p is a pure quaternion, then p² = -|p|². (b) Define the notion of an (associative) algebra. (c) Let A be a vector space with basis 1, a, b. Which (if any) of the following rules turn A into an algebra? (You may assume that 1 is a unit.) (i) a² = a, b²=ab = ba 0. (ii) a² (iii) a² = b, b² = abba = 0. = b, b² = b, ab = ba = 0. (d) Let u1, 2 and 3 be in the Temperley-Lieb algebra TL4(8). ገ 12 13 Compute (u3+ Augu2)² where A EK and hence find a non-zero x € TL4 (8) such that ² = 0.arrow_forwardQ1: Solve the system x + x = t², x(0) = (9)arrow_forward
- Between the function 3 (4)=x-x-1 Solve inside the interval [1,2]. then find the approximate Solution the root within using the bisection of the error = 10² method.arrow_forwardE10) Perform four iterations of the Jacobi method for solving the following system of equations. 2 -1 -0 -0 XI 2 0 0 -1 2 X3 0 0 2 X4 With x(0) (0.5, 0.5, 0.5, 0.5). Here x = (1, 1, 1, 1)". How good x (5) as an approximation to x?arrow_forwardby (2) Gauss saidel - - method find (2) و X2 for the sestem X1 + 2x2=-4 2x1 + 2x2 = 1 Such thef (0) x2=-2arrow_forward
- ax+b proof that se = - è (e" -1)" ë naxarrow_forward20.11 ← UAS Sisa waktu 01:20:01 51%- Soal 2 Perhatikan gambar di bawah (Sembunyikan ) Belum dijawab Ditandai dari 1,00 5 A B E D 10 20 Jika ruas garis AB, PE, dan DC sejajar dan ketiganya tegak lurus dengan ruas garis BC, maka panjang ruas garis PE adalah ... (cukup tulis bilangannya tanpa spasi dalam bentuk desimal tiga angka di belakang koma, seperti a,bcd atau pecahan m/n untuk m n Jawaban: Jawaban ||| <arrow_forward20.07 52% X https://www.chegg.com/hc <: C Chegg Learn on the go = Chegg (X) Open in app EN-US ✔ What's your next question? √x #16 A surveyor sees a building across the river. Standing at point A he measures the angle of elevation from the ground to the top of the building to be 30 degrees. He steps back 100 feet and again measures the angle of elevation and finds it to be 15. (See Figure 12.26.) Assuming that it makes a 90-degree angle with the floor, approximately how tall is the building? 15 30° 100 A river Figure 12.26 Show image transcript Here's the best way to solve it. Solution ||| о building < Sharearrow_forward
- No chatgpt pls will upvotearrow_forwardModule Code: MATH380202 3. (a) Let {} be a white noise process with variance σ2. Define an ARMA(p,q) process {X} in terms of {+} and state (without proof) conditions for {X} to be (i) weakly stationary and (ii) invertible. Define what is meant by an ARIMA (p, d, q) process. Let {Y} be such an ARIMA(p, d, q) process and show how it can also be represented as an ARMA process, giving the AR and MA orders of this representation. (b) The following tables show the first nine sample autocorrelations and partial auto- correlations of X and Y₁ = VX+ for a series of n = 1095 observations. (Notice that the notation in this part has no relationship with the notation in part (a) of this question.) Identify a model for this time series and obtain preliminary estimates for the pa- rameters of your model. X₁ = 15.51, s² = 317.43. k 1 2 3 4 5 6 7 Pk 0.981 0.974 0.968 akk 0.981 0.327 8 9 0.927 0.963 0.957 0.951 0.943 0.935 0.121 0.104 0.000 0.014 -0.067 -0.068 -0.012 Y₁ = VX : y = 0.03, s² = 11.48. k 1…arrow_forwardLet G be a graph with n ≥ 2 vertices x1, x2, . . . , xn, and let A be the adjacency matrixof G. Prove that if G is connected, then every entry in the matrix A^n−1 + A^nis positive.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Advanced Engineering MathematicsAdvanced MathISBN:9780470458365Author:Erwin KreyszigPublisher:Wiley, John & Sons, IncorporatedNumerical Methods for EngineersAdvanced MathISBN:9780073397924Author:Steven C. Chapra Dr., Raymond P. CanalePublisher:McGraw-Hill EducationIntroductory Mathematics for Engineering Applicat...Advanced MathISBN:9781118141809Author:Nathan KlingbeilPublisher:WILEY
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY