Concept explainers
(A)
To find: The change in
(A)
Answer to Problem 1RE
The change in y is 16.
Explanation of Solution
Given:
The function y is
Definition used:
Increments:
“For
Calculation:
Consider the function
Compute the change in x or
From the given definition, it is known that
So the value of change in x is
Compute the change in y or
Compute
Therefore, the value of
Compute
Therefore, the value of
From the given definition, it is known that
Therefore, the change in y as x changes from 1 to 3 is 16.
(B)
To find: The average rate of change of y with respect to x when the value of x changes from 1 to 3.
(B)
Answer to Problem 1RE
The average rate of change of y with respect to x is 8.
Explanation of Solution
Definition used:
Average Rate of Change:
“For
Calculation:
From part (A), the value of
Compute the average rate of change by using the above mentioned definition.
Therefore, the average rate of change of y with respect to x when the value of x changes from 1 to 3 is 8.
(C)
To find: The slope of the secant line passing through the points
(C)
Answer to Problem 1RE
The slope of the secant line is 8.
Explanation of Solution
Result used:
“The slope of the secant line joining points
Calculation:
From part (A), the value of
Compute the slope of the secant line joining points
Therefore, the slope of the secant line passing through the points
(D)
To find: The instantaneous rate of change of y with respect to x when
(D)
Answer to Problem 1RE
The instantaneous rate of change of y is 4.
Explanation of Solution
Definition used:
Instantaneous rate of change:
“For
Calculation:
Obtain instantaneous rate of change at
That is,
Obtain
From part (A),
Substitute the value of
Therefore, the instantaneous rate of change of y with respect to x at
(E)
To find: The slope of the tangent line at
(E)
Answer to Problem 1RE
The slope of the tangent line is 4.
Explanation of Solution
Formula used:
Slope of the tangent line.
The slope of the tangent line at the point
Calculation:
From part (D), the instantaneous rate of change of y with respect to x at
That is, the value of the derivative of the function
So by the above mentioned definition, the slope of the tangent line is 4.
Therefore, the slope of the tangent line at
(F)
To find: The value of
(F)
Answer to Problem 1RE
The value of
Explanation of Solution
Theorem used:
Power rule:
“If
Also,
Sum and difference property:
“If
Also,
Constant Function rule:
“If
Also,
Calculation:
Compute the derivative of
Substitute
Therefore, the value of
Want to see more full solutions like this?
Chapter 2 Solutions
FIN 108 ISU LOOSE >IP<
- 9. (a) Use pseudocode to describe an algo- rithm for determining the value of a game tree when both players follow a minmax strategy. (b) Suppose that T₁ and T2 are spanning trees of a simple graph G. Moreover, suppose that ₁ is an edge in T₁ that is not in T2. Show that there is an edge 2 in T2 that is not in T₁ such that T₁ remains a spanning tree if ₁ is removed from it and 2 is added to it, and T2 remains a spanning tree if 2 is removed from it and e₁ is added to it. (c) Show that a degree-constrained spanning tree of a simple graph in which each vertex has degree not exceeding 2 2 consists of a single Hamiltonian path in the graph.arrow_forwardChatgpt give wrong answer No chatgpt pls will upvotearrow_forward@when ever one Point sets in x are closed a collection of functions which separates Points from closed set will separates Point. 18 (prod) is product topological space then VaeA (xx, Tx) is homeomorphic to sul space of the Product space (Txa, prod). KeA © The Bin Projection map B: Tx XP is continuous and open but heed hot to be closed. A collection (SEA) of continuos function oha topolgical Space X se partes Points from closed sets inx iff the set (v) for KEA and Vopen set in Xx from a base for top on x.arrow_forward
- Simply:(p/(x-a))-(p/(x+a))arrow_forwardMake M the subject: P=2R(M/√M-R)arrow_forwardExercice 2: Soit & l'ensemble des nombres réels. Partie A Soit g la fonction définie et dérivable sur R telle que, pour tout réel x. g(x) = - 2x ^ 3 + x ^ 2 - 1 1. a) Étudier les variations de la fonction g b) Déterminer les limites de la fonction gen -oo et en +00. 2. Démontrer que l'équation g(x) = 0 admet une unique solution dans R, notée a, et que a appartient à | - 1 ;0|. 3. En déduire le signe de g sur R. Partie B Soit ƒ la fonction définie et dérivable sur R telle que, pour tout réel s. f(x) = (1 + x + x ^ 2 + x ^ 3) * e ^ (- 2x + 1) On note f la fonction dérivée de la fonction ƒ sur R. 1. Démontrer que lim x -> ∞ f(x) = - ∞ 2. a) Démontrer que, pour tout x > 1 1 < x < x ^ 2 < x ^ 3 b) En déduire que, pour x > 1 0 < f(x) < 4x ^ 3 * e ^ (- 2x + 1) c) On admet que, pour tout entier naturel n. lim x -> ∞ x ^ n * e ^ (- x) = 0 Vérifier que, pour tout réel x, 4x ^ 3 * e ^ (- 2x + 1) = e/2 * (2x) ^ 3 * e ^ (-2x) puis montrer que: lim x -> ∞ 4x ^ 3 * e…arrow_forward
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage