Concept explainers
Calculate the loads that is acting on the floor beam BE and girder AC.
Answer to Problem 1P
The uniformly distributed load acting on the floor beam BE is
The load acting at A, B, and C on the girder AC are
Explanation of Solution
Given information:
The building is a single-story building.
The building is subjected to uniformly distributed load of
Calculation:
Show the roof of the single-story storage building as shown in Figure 1.
Refer Figure 1.
The columns are denoted by A, C, D, and F.
The floor beam is denoted by BE.
The girders are denoted by AC and DF.
Show the tributary area of the floor beam BE as shown in Figure 2.
Refer Figure 2.
The tributary area of the floor beam BE is denoted by the shaded area.
Calculate the tributary area of the floor beam BE
The length of the floor beam BE is
Calculate the uniformly distributed load
Substitute
Show the uniformly distributed load acting on the floor beam BE as shown in Figure 3.
Refer Figure 3.
The reactions at B and E are denoted by
The loading on the floor beam BE is symmetrical.
Calculate the value of
Show the uniformly distributed load acting on the floor beam BE as shown in Figure 4.
Refer Figure 4.
Thus, the uniformly distributed load acting on the floor beam BE is
Show the tributary area of the girder AC as shown in Figure 5.
Refer Figure 5.
The tributary area of the girder AC is denoted by the shaded area.
Calculate the tributary area of the girder AC
Calculate the load
Substitute
The total load acting on the tributary area of the girder AC is
Almost half the load acts at the junction of the floor beam BE and the girder AC. Then,
The load acting at B is
The remaining half of the load acts equally on the column A and C. Then,
The load acting at A is
Show the load acting on the girder AC as shown in Figure 6.
Refer Figure 6.
The reactions at A and C are denoted by
The loading on the girder AC is symmetrical.
Calculate the value of
Show the load acting on the girder AC as shown in Figure 7.
Refer Figure 7.
Thus, the load acting at A, B, and C on the girder AC are
Want to see more full solutions like this?
- A one-story building as shown in the plan, if the height of the concrete floor is 320 m, the width of the wall is 0.24 and the roof is made of reinforced concrete, the amount of iron for the roof is 100 kg m3 and there are downward depressions with a depth of 0.40 and a width of 0.25 along the wall and the amount of reinforcing iron is 89 kg m3 and there are 14 columns with dimensions of 0.500.30 and a height of 2.80, the amount of reinforcing iron is 120 kg m3 Find The amount of bricks used for construction The amount of mortar used for construction (cement + sand) -1 -2 The amount of plaster for the building from the inside is 2 cm thick (cement + sand) -3 Quantity of floor tiles for the room Quantity of concrete for the ceiling and beams. Ceiling thickness: 0.20 m. Total amount of reinforcing steel for the roof (tons) Quantity of reinforcing steel for columns (tons) Total amount of reinforcing steel for balls (tons) -4 -5 -6 -7 -8arrow_forwardK Course Code CE181303 Course Title Hours per week L-T-P Credit C Fluid Mechanics 3-1-0 MODULE 1: Fluid Properties: Fluid-definition, types; physical properties of fluid-density, specific weight, specific volume, specific gravity, viscosity- Newton's law of viscosity, surface tension, compressibility of fluids, capillarity. MODULE 2: Fluid Statics: Hydrostatic pressure, pressure height relationship, absolute and gauge pressure, measurement of pressure-manometer, pressure on submerged plane and curved surfaces, centre of pressure; buoyancy, equilibrium of floating bodies, metacentre; fluid mass subjected to accelerations. MODULE 3: Fluid Kinematics: Types of motion- steady and unsteady flow, uniform and no uniform flow, laminar and turbulent flow, and path lines, stream tube, stream function compressible and incompressible flow, one, two & three dimensional flow; stream lines, streak lines and velocity potential, flow net and its drawing: free and forced vortex. MODITE Q. A closed…arrow_forwardH.W: For the tank shown in figure below, Find The amount of salt in the tank at any time. Ans: x = 2(100+t) 1500000 (100 + t)² Qin = 3 L/min Cin = 2 N/L V = 100 L Xo=50N Qout = 2 L/min Cout? 33arrow_forward
- - Find reactions and draw Shear and Bending Moment Diagram. 30 N 15 N/m D B A 2 m 1 m 2 mmarrow_forward: A 5ms- long current pulse is desired for two linear lamps connected in series and pumped at a total energy input of (1KJ). Each of lamps has an arc-length of (10cm) and a bore of (1cm). If we assume a peak current of (i, -650A). Design a multiple mesh network including number of LC sections, inductance and capacitance per section and capacitor voltage. Laser designarrow_forwardWhat would be the best way to handle when a contractor misses a concrete pour deadline which causes delays for other contractors?arrow_forward
- Please solve manuallyarrow_forward. The free fall distance was 1753 mm. The times for the release and catch recorded on the fall experiments were in millisecond: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Calculate the time taken for the fall for each experiment. Calculate for each fall the acceleration based on time and distance. Calculate the mean of the accelerations. Give in the answer window the calculated mean of accelerations in m/s2.arrow_forwardneed help. explain plzarrow_forward
- -Design the traffic signal intersection using all red 2 second, for all phase the truck percent 5% for all movement, and PHF -0.95 Check for capacity only Approach Through volume Right volume Left volume Lane width Number of lane Veh/hr Veh/hr Veh/hr m North 700 100 150 3.0 3 south 600 75 160 3.0 3 East 300 80 50 4.0 R west 400 50 55 4.0 2arrow_forwardneed helparrow_forwardFor the beam show below, draw A.F.D, S.F.D, B.M.D A 2 N M 10 kN.m B 2 M Carrow_forward