Verify whether the interconnection in the circuit in Figure P2.1 in the textbook is valid or not. Calculate the power developed by the current sources if the circuit is valid. Explain the reason if the interconnection in the circuit is not valid.
Answer to Problem 1P
The interconnection in the given circuit is valid and the power developed by the current sources is 1700 W.
Explanation of Solution
Given data:
Refer to Figure P2.1 in the textbook for required data.
Formula used:
Write the expression for power developed by the source (voltage or current) as follows:
Here,
Calculation:
From the given circuit, it is clear that, the voltage drop across the 10 A current source is 100 V and the voltage drop from the negative terminal of the 40 V voltage source to the bottom terminal of the 5 A current source must be 100 V.
In order to maintain the voltage drop of 100 V from the negative terminal of the 40 V voltage source to the bottom terminal of the 5 A current source the voltage drop across 5 A current source must be 140 V.
From the analysis, redraw the circuit as shown in Figure 1.
All the sources in the given circuit are independent sources. The independent voltage source can carry any current that required by the connection and the independent current source can support any voltage that required by the connection.
From the analysis, the voltage drop across the sources is satisfied. Therefore, the interconnection in the given circuit is valid.
Rewrite the expression in Equation (1) to find the power developed by the 10 A current source as follows:
From Figure 1, current 10 A enters from the negative terminal of 100 V. Therefore, the values of
The negative sign indicates the delivered power by the source. Therefore, the power developed by the 10 A current source is 1000 W.
Rewrite the expression in Equation (1) to find the power developed by the 5 A current source as follows:
From Figure 1, current 5 A enters from the negative terminal of 140 V. Therefore, the values of
As the negative sign indicates the delivered power by the source, the power developed by the 5 A current source 700 W.
Write the expression for power developed by the both current sources as follows:
Substitute 1000 W for
Conclusion:
Thus, the interconnection in the given circuit is valid and the power developed by the current sources is 1700 W.
Want to see more full solutions like this?
Chapter 2 Solutions
Electric Circuits. (11th Edition)
- Please I need accurate answers , according to thr book the answers for STS part are (a) 41 , (b) 10828arrow_forwardAn industrial soft drink production plant needs to implement a quality control system for its bottling line. The system must monitor four critical parameters and activate different alarms depending on the conditions detected. Design a digital circuit with 4 inputs and 3 outputs for this purpose, Design the logic circuit for this control system using Karnaugh maps to simplify the Boolean functions of each output. The final design must be efficient and use as few logic gates as possible. Inputs: A: Carbonation level (0 = normal, 1 = high) B: Liquid temperature (0 = normal, 1 = elevated) C: Line pressure (0 = normal, 1 = low) D: Filling speed (0 = normal, 1 = low) Outputs: X: Minor adjustment alarm (triggered when an odd number of parameters are out of range) Y: Major revision alarm (triggered when at least three parameters are out of range) Z: Adjacent parameters alarm (triggered when exactly two adjacent parameters are out of range)arrow_forwardPlease solve it for STS and TSTarrow_forward
- Q3) The ECL circuit as shown in fig. 3 has: (VBE (ECL) = 0.75V, B = 99, VBC (sat) = 0.6V And VOH(min) (VOH - 0.04), determine:- 1. The dissipation power (avg.). 2. The IoH and IiH when excluding red-colored components. (12 Marks) NG RCIB RCIA RCR QBO 100 100 112 LoVo ALQIA QR1 0 QR2 QIB VBB -1,31 REA 365 VEE 365 REB ¥ 5.2arrow_forwardAccording to the book the answers are (a)0.11 (b) 0.25arrow_forwardAccording to the book the answer for (a) is 55,296arrow_forward
- please solve and show steps i want to study themarrow_forwardthe blank space: Three power plants have the following fuel cost (in $/hour), where the power is in MW: C₁ = 0.15P² + 32P₁ + 3200 C₂ = 0.25P2 + 20P2 + 2400 C3 = 0.1P + 35P3 + 1800 If the demand is 150 MW, and ignoring losses and generators limits, answer (1) - (3): 1) The incremental fuel cost of plant 1 when the generated power P, is 76 MW is 2) The incremental fuel cost at which the optimal dispatch is achieved is 3) The amount of power must be generated by plant 2 for optimal dispatch isarrow_forwardplease show steps i want to study them.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,