Introduction:
The building blocks of all the elements present in the universe are known as atoms, which are invisible to the naked eye. An atom, in turn, is composed of much smaller particles known as subatomic particles. The atom is divided into two main regions, including nucleus and a peripheral region. The subatomic particles, electrons, protons, and neutrons, are distributed in these two regions inside the atom.
Answer to Problem 1MC
Correct answer:
The nucleus containing the subatomic particles determines the mass of the atom. These subatomic particles determine the atomic number of the atom.
Explanation of Solution
Explanation for correct answers:
Option (a) is given that the atomic nucleus contains the atom’s mass. The nucleus contains the neutrons and protons, which hold the majority portion of the weight of the atom. The negatively charged electrons that move around the nucleus in their respective orbitals are nearly massless. Hence, option (a) is correct.
Option (c) is given that the subatomic particles can be ejected from the nucleus. Two forces work within an atom:
Option (d) is given that the atomic number is determined by the subatomic particles contained within the nucleus. The atomic number is denoted by the number of protons present within the nucleus, which is unique for each element. Hence, option (d) is correct.
Explanation for incorrect answers:
Option (b) is given that the negatively charged subatomic particles are present in the nucleus. The electrons that carry the negative charge move around the nucleus in fixed orbits. The number of protons is equal to the number of electrons present in the nucleus. So, it is an incorrect option.
Option (e) is given that the subatomic particles present within the nucleus interact with other atoms. The protons that are present within the nucleus are confined in their region and do not leave the nucleus unless there are strong nuclear forces. The electrons are mainly responsible for the interaction with other atoms by either sharing or transferring electrons. So, it is an incorrect option.
Hence, options (b) and (e) are incorrect.
Thus, the nucleus having the protons along with the neutrons makes up the mass of the atom. These subatomic particles can also be ejected from the nucleus under certain circumstances, which ultimately leads to the decay of the atom. The atomic number depends on the number of protons present within the nucleus.
Want to see more full solutions like this?
Chapter 2 Solutions
Essentials of Human Anatomy & Physiology (12th Edition)
- As a medical professional, it is important to be able to discuss how genetic processes such as translation regulation can directly affect patients. Think about some situations that might involve translation regulation. Respond to the following in a minimum of 175 words: Why is translation regulation important? What are some examples of translation regulation in humans? Select one of the examples you provided and explain what happens when translation regulation goes wrong.arrow_forwardThe metabolic pathway below is used for the production of the purine nucleotides adenosine monophosphate (AMP) and guanosine monophosphate (GMP) in eukaryotic cells. Assume each arrow represents a reaction catalyzed by a different enzyme. Using the principles of feedback inhibition, propose a regulatory scheme for this pathway that ensures an adequate supply of both AMP and GMP, and prevents the buildup of Intermediates A through G when supplies of both AMP and GMP are adequate.arrow_forwardQUESTION 27 Label the structures marked A, B, C and explain the role of structure A. W plasma membrane For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). BIUS ☐ Paragraph Π " ΩΘΗ Β Open Sans, a... 10pt EEarrow_forward
- examples of synamptomorphyarrow_forwardexamples of synamtomorphy.arrow_forwardE. Bar Graph Use the same technique to upload the completed image. We will use a different type of graph to derive additional information from the CO2 data (Fig A1.6.2) 1. Calculate the average rate of increase in COz concentration per year for the time intervals 1959-1969, 1969- 1979, etc. and write the results in the spaces provided. The value for 1959-1969 is provided for you as an example. 2. Plot the results as a bar graph. The 1959-1969 is plotted for you. 3. Choose the graph that looks the most like yours A) E BAR GRAPH We will use a different type of graph to derive additional information from the CU, data (rig. nive). Average Yearly Rate of Observatory, Hawall interval Rate of increase per year 1959-1969 0.9 1969-1979 1979-1989 1989-1999 1999-2009 Figure A1.6.2 1999-2009 *- mrame -11- -n4 P2 جية 1989-1999 1979-1989 1969-1979 1959-1969 This bar drawn for you as an example 1.0 CO, Average Increase/Year (ppmv) B) E BAR GRAPH We will use a different type of graph to derive…arrow_forward
- Use the relationships you just described to compute the values needed to fill in the blanks in the table in Fig A1.4.1 depth (a) 1.0 cml 0.7 cml cm| base dimensions (b, c)| 1.0 cm| 1.0 cm| 1.0 cm 1.0 cm| 1.0 cm| 1.0 cm volume (V) 1.0_cm' cm'| cm'| density (p) 1.0 g/cm'| 1.0 g/cm 1.0 g/cm' mass (m)| 0.3 g Column 1: depth at 1.0 cm volume mass Column 2: depth at 0.7 cm volume mass Column 3: unknown depth depth volumearrow_forwardSan Andreas Transform Boundary Plate Motion The geologic map below of southern California shows the position of the famous San Andreas Fault, a transform plate boundary between the North American Plate (east side) and the Pacific Plate (west side). The relative motion between the plates is indicated by the half arrows along the transform plate boundary (i.e., the Pacific Plate is moving to the northwest relative to the North American Plate). Note the two bodies of Oligocene volcanic rocks (labeled Ov) on the map in the previous page located along either side of the San Andreas Fault. These rocks are about 23.5 million years old and were once one body of rock. They have been separated by displacement along the fault. 21. Based on the offset of these volcanic rocks, what is the average annual rate of relative plate motion in cm/yr? SAF lab 2.jpg Group of answer choices 0.67 cm/yr 2 cm/yr 6.7 cm/yr 1.5 cm/yr CALIFORNIA Berkeley San Francisco K Os Q San Andreas Fault Ov…arrow_forwardThese are NOT part of any graded assignment. Are there other examples of synapomorphy. What is it called when the traits retained are similar to ancestors?arrow_forward
- Principles Of Radiographic Imaging: An Art And A ...Health & NutritionISBN:9781337711067Author:Richard R. Carlton, Arlene M. Adler, Vesna BalacPublisher:Cengage LearningBiology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning
- Human Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning