Visit this website (http://openstaxcollege.org/l/ptable) to view the periodic table. In the periodic table of the elements, elements in a single column have the same number of electrons that can participate in a
To analyze:
The meaning of mass number based on the given information.
Introduction:
Each element in the periodic table has a specific atomic number which is equal to the number of protons present in it. Each element also has a mass number which is equal to the total of a number of protons and neutrons.
Answer to Problem 1ILQ
The meaning of mass number shown in the parentheses is that the mass number of an element is the total number of neutrons and protons present in the nucleus of the atom.
Explanation of Solution
Given information:
The elements present in one column of the periodic table has the same number of electrons in the outermost shell or valence shell. These electrons can participate in the chemical reaction by donating, accepting or sharing of electrons.
The atom of an element has an equal number of protons and electrons but the number of electrons can change when the atom donates or accepts an electron in a chemical reaction to achieve the noble gas electronic configuration. The number of neutrons is fixed for an atom of the element. So, the mass number of an element is calculated by the total of a number of protons and the neutrons which are present in the nucleus of the atom.
The mass number is equal to the total number of protons and neutrons in the nucleus of the atom.
Want to see more full solutions like this?
Chapter 2 Solutions
Anatomy and Physiology by OpenStax
Additional Science Textbook Solutions
Human Physiology: An Integrated Approach (8th Edition)
Biology: Life on Earth (11th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Anatomy & Physiology (6th Edition)
Microbiology: An Introduction
Campbell Biology: Concepts & Connections (9th Edition)
- What is the formula of Evolution? Define each item.arrow_forwardDefine the following concepts from Genetic Algorithms: Mutation of an organism and mutation probabilityarrow_forwardFitness 6. The primary theory to explain the evolution of cooperation among relatives is Kin Selection. The graph below shows how Kin Selection theory can be used to explain cooperative displays in male wild turkeys. B When paired, subordinant males increase the reproductive success of their solo, dominant brothers. 0.9 C 0 Dominant Solo EVOLUTION Se, Box 13.2 © 2023 Oxford University Press rB rB-C Direct Indirect Fitness fitness fitness gain Subordinate 19 Fitness After A. H. Krakauer. 2005. Nature 434: 69-72 r = 0.42 Subordinant Dominant a) Use Hamilton's Rule to show how Kin Selection can support the evolution of cooperation in this system. Show the math. (4 b) Assume that the average relatedness among male turkeys in displaying pairs was instead r = 0.10. Could kin selection still explain the cooperative display behavior (show math)? In this case, what alternative explanation could you give for the behavior? (4 pts) 7. In vampire bats (pictured below), group members that have fed…arrow_forward
- Examine the following mechanism and classify the role of each labeled species in the table below. Check all the boxes that applyarrow_forward1. Define and explain the two primary evolutionary consequences of interspecific competitionarrow_forward2 A linear fragment of DNA containing the Insulin receptor gene is shown below, where boxes represent exons and lines represent introns. Assume transcription initiates at the leftmost EcoRI site. Sizes in kb are indicated below each segment. Vertical arrows indicate restriction enzyme recognition sites for Xbal and EcoRI in the Insulin receptor gene. Horizontal arrows indicate positions of forward and reverse PCR primers. The Horizontal line indicates sequences in probe A. Probe A EcoRI Xbal t + XbaI + 0.5kb | 0.5 kb | 0.5 kb | 0.5kb | 0.5 kb | 0.5 kb | 1.0 kb EcoRI On the gel below, indicate the patterns of bands expected for each DNA sample Lane 1: EcoRI digest of the insulin receptor gene Lane 2: EcoRI + Xbal digest of the insulin receptor gene Lane 3: Southern blot of the EcoRI + Xbal digest insulin receptor gene probed with probe A Lane 4: PCR of the insulin receptor cDNA using the primers indicated Markers 6 5 4 1 0.5 1 2 3 4arrow_forward
- 4. (10 points) woman. If both disease traits are X-linked recessive what is the probability A man hemizygous for both hemophilia A and color blindness mates with a normal hemophilia A nor colorblindness if the two disease genes show complete that a mating between their children will produce a grandson with neither a. linkage? (5 points) that a mating between their children will produce a grandson with both hemophilia A and colorblindness if the two disease genes map 40 cM apart? (5 points)arrow_forward2 2 1.5 1.0 0.67 5. (15 points) An individual comes into your clinic with a phenotype that resembles Down's syndrome. You perform CGH by labeling the patient's hobe DNA red and her mother's DNA green. Plot the expected results of the Red:Green ratio if: A. The cause of the syndrome was an inversion on one chromosome 21 in the child 0.5 1.5 1.0 0.67 0.5 21 p 12345678910 CEN q 123456789 10 11 12 13 14 15 16 17 18 19 B. The cause of the syndrome was a duplication of the material between 21q14 and 21q18 on one chromosome in the child 21 p 123456789 10 CEN q 12345678910 11 12 13 14 15 16 17 18 19 C. The mother carried a balanced translocation that segregated by adjacent segregation in meiosis I and resulted in a duplication in the child of the material distal to the translocation breakpoint at 21q14. 1.5 1.0 0.67 0.5 21 p 12345678910 CEN q 123456789 10 11 12 13 14 15 16 17 18 19 mom seal bloarrow_forward4. You find that all four flower color genes map to the second chromosome, and perform complementation tests with deletions for each gene. You obtain the following results: (mutant a = blue, mutant b = white, mutant c = pink, mutant d = red) wolod Results of Complementation tests suld Jostum Mutant a b с Del (2.2 -2.6) blue white pink purple Del (2.3-2.8) blue white pink red Del (2.1 -2.5) blue purple pink purple Del (2.4-2.7) purple white pink red C d Indicate where each gene maps: a b ori ai indW (anioq 2) .8arrow_forward
- lon 1. Below is a pedigree of a rare trait that is associated with a variable number repeat. PCR was performed on individuals using primers flanking the VNR, and results are shown on the agarose gel below the pedigree. I.1 1.2 II.1 II.2 II.3 II.4 II.5 II.6 11.7 III.1 III.2 III.3 III.4etum A. (5 points) What is the mode of inheritance? B. (10 points) Fill in the expected gel lanes for II.1, II.5, III.2, III.3 and III.4 C. (5 points) How might you explain the gel results for II.4?arrow_forwardTo study genes that create the purple flower color in peas, you isolate 4 amorphic mutations. Each results in a flower with a different color, described mutant a = blue mutant c = pink mutant b = white mutant d = red A. In tests of double mutants, you observe the following phenotypes: mutants a and b = blue mutants b and c = white mutants c and d = pink Assuming you are looking at a biosynthetic pathway, draw the pathway indicating which step is affected by each mutant. B. What is the expected flower color of a double mutant of a and c?arrow_forwardExplain the principle of MALDI-TOF mass spectrometry.arrow_forward
- Anatomy & PhysiologyBiologyISBN:9781938168130Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark WomblePublisher:OpenStax CollegeBiology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage Learning
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning