Physical Science
11th Edition
ISBN: 9780077862626
Author: Bill Tillery, Stephanie J. Slater, Timothy F. Slater
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 19AC
Newton’s first law of motion describes
a. the tendency of a moving or stationary’ object to resist any change in its state of motion.
b. a relationship between an applied force, the mass, and the resulting change of motion that occurs from the force.
c. how forces always occur in matched pairs.
d. none of the above.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The statement that the resultant of the external forces on any system of masses equals the total mass of the system times the acceleration of the center of mass is:
a. Newton’s first law for a system of constant mass.
b. Newton’s second law for a system of constant mass.
c. Galileo’s law of motion.
d. Newton’s third law for a system of constant mass.
9. According to which of the following laws of
mechanics a body remains/continue in its state of
rest or motion until it is disturbed by an external
agent?
a. Newton’s first law of motion
b. Newton’s second law of motion
c. Newton’s third law of motion
d. Superposition law
10. Which of the following is the characteristic of force?
a. Magnitude of force
b. Point of application of force
c. Direction of application of force
d. All of the mentioned
According to Newton’s second law:
a. The velocity of a particle is equal to the net force on the particle divided by the mass of the particle.
b. The net force on a particle is equal to the product of the velocity of the particle with the acceleration of a particle.
c. The net force on a particle is equal to the product of the mass of the particle with the acceleration of a particle.
d. The velocity of a particle is equal to the net force on the particle multiplied by the mass of the particle.
Chapter 2 Solutions
Physical Science
Ch. 2 - 1. A straight-line distance covered during a...Ch. 2 - 2. How fast an object is moving in a particular...Ch. 2 -
3. Acceleration occurs when an object undergoes...Ch. 2 - Prob. 4ACCh. 2 -
5. A car moving at 60 km/h comes to a stop in 10...Ch. 2 -
6. According to Galileo, an object moving without...Ch. 2 -
7. In free fall, an object is seen to have a (an)...Ch. 2 -
8. A tennis ball is hit, causing it to move...Ch. 2 -
9. A quantity of 5 m/s2 is a measure of...Ch. 2 - 10. An automobile has how many different devices...
Ch. 2 - 11. Ignoring air resistance, an object falling...Ch. 2 - 12. Ignoring air resistance, an object falling...Ch. 2 - 13. Two objects are released from the same height...Ch. 2 - 14. A ball rolling across the floor slows to a...Ch. 2 - 15. The basic difference between instantaneous and...Ch. 2 - 16. Does any change in the motion of an object...Ch. 2 - 17. A measure of how fast your speed is changing...Ch. 2 - 18. Considering the forces on the system of you...Ch. 2 - 19. Newton’s first law of motion describes
a. the...Ch. 2 - 20. You are standing freely on a motionless...Ch. 2 - 21. Mass is measured in kilograms, which is a...Ch. 2 - 22. Which metric unit is used to express a measure...Ch. 2 - 23. Newton’s third law of motion states that...Ch. 2 - 24. If you double the unbalanced force on an...Ch. 2 - 25. If you double the mass of a cart while it is...Ch. 2 - 26. Doubling the distance between the center of an...Ch. 2 - 27. If a ball swinging in a circle on a string is...Ch. 2 - 28. A ball is swinging in a circle on a string...Ch. 2 - 29. Suppose the mass of a moving scooter is...Ch. 2 - 30. Two identical moons are moving in identical...Ch. 2 - 31. Which undergoes a greater change of momentum,...Ch. 2 - Prob. 32ACCh. 2 - 33. An astronaut living on a space station that is...Ch. 2 - Prob. 34ACCh. 2 -
35. You are at rest with a grocery cart at the...Ch. 2 -
36. Once again you are at rest with a grocery...Ch. 2 -
37. You are moving a grocery cart at a constant...Ch. 2 -
38. You are outside a store, moving a loaded...Ch. 2 -
39. Neglecting air resistance, a ball in free...Ch. 2 -
40. From a bridge, a ball is thrown straight up...Ch. 2 -
41. After being released, a ball thrown straight...Ch. 2 -
42. A gun is aimed horizontally at the center of...Ch. 2 -
43. According to the third law of motion, which...Ch. 2 -
44. A small sports car and a large SUV collide...Ch. 2 -
45. Again consider the small sports car and large...Ch. 2 -
46. An orbiting satellite is moved from 10,000 to...Ch. 2 -
47. Newton’s law of gravitation considers the...Ch. 2 - 1. An insect inside a bus flies from the back...Ch. 2 - 2. Disregarding air friction, describe all the...Ch. 2 -
3. Can gravity act in a vacuum? Explain.
Ch. 2 -
4. Is it possible for a small car to have the...Ch. 2 -
5. Without friction, what net force is needed to...Ch. 2 -
6. How can there ever be an unbalanced force on...Ch. 2 -
7. Why should you bend your knees as you hit the...Ch. 2 -
8. Is it possible for your weight to change while...Ch. 2 - Prob. 9QFTCh. 2 - 10. Suppose you are standing on the ice of a...Ch. 2 - 11. A rocket blasts off from a platform on a space...Ch. 2 - 12. An astronaut leaves a spaceship that is moving...Ch. 2 - 1. What are the significant similarities and...Ch. 2 - 2. What are the significant similarities and...Ch. 2 -
3. Compare your beliefs and your own reasoning...Ch. 2 -
5. Why is it that your weight can change by...Ch. 2 -
6. Assess the reasoning that Newton's first law...Ch. 2 - 1. What was the average speed in km/h of a car...Ch. 2 - 2. What was the average speed in km/h of a boat...Ch. 2 -
3. How much would an 80.0 kg person weigh (a) on...Ch. 2 -
4. What force is needed to give a 6,000 kg truck...Ch. 2 -
5. What is the resulting acceleration when a 300...Ch. 2 -
6. A boat moves 15.0 km across a lake in 30.0...Ch. 2 -
7. If the Sun is a distance of 1.5 108 km from...Ch. 2 -
8. How many meters away is a cliff if an echo is...Ch. 2 -
9. A car has an average speed of 80.0 km/h for 1...Ch. 2 - 10. What is the acceleration of a car that moves...Ch. 2 - 11. How much time is needed for a car to...Ch. 2 - 12. A rocket moves through outer space at 11,000...Ch. 2 - 13. Sound travels at 348 m/s in the warm air...Ch. 2 - 14. How many hours are required for a radio signal...Ch. 2 - 15. A rifle is fired straight up, and the bullet...Ch. 2 - 16. A rock thrown straight up climbs for 2.50 s,...Ch. 2 - 17. An object is observed to fall from a bridge,...Ch. 2 - 18. A ball dropped from a window strikes the...Ch. 2 - 19. Find the resulting acceleration from a 300 N...Ch. 2 - 20. What is the momentum of a 30.0 kg shell fired...Ch. 2 - 21. What is the momentum of a 39.2 N bowling ball...Ch. 2 - 22. A 30.0 kg shell is fired from a 2,000 kg...Ch. 2 - 23. An 80.0 kg man is standing on a frictionless...Ch. 2 - 24. (a) What is the weight of a 5.00 kg backpack?...Ch. 2 - 25. What net force is required to accelerate a...Ch. 2 - 26. What forward force must the ground apply to...Ch. 2 - 27. A 1,000.0 kg car accelerates uniformly to...Ch. 2 - 28. A net force of 3,000.0 N accelerates a car...Ch. 2 - 29. How much does a 60.0 kg person weigh?
Ch. 2 - 30. What tension must a 50.0 cm length of string...Ch. 2 - 31. A 200.0 kg astronaut and equipment move with a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Twenty people participate in a tug-of-war. The two teams of ten people are so evenly matched that neither team wins. After the game they notice that a car is stuck in the mud. They attach the tug-of-war rope to the bumper of the car, and all the people pull on the rope. The heavy car has just moved a couple of decimeters when the rope breaks. Why did the rope break in this situation when it did not break when the same twenty people pulled on it in a tug-of-war?arrow_forwardA force is a quantity that is ___ of producing motion or a change in motion. (3.1)arrow_forwardDescribe the path of a moving body in the event that (a) its acceleration is constant in magnitude at all times and perpendicular to the velocity, and (b) its acceleration is constant in magnitude al all times and parallel to the velocity.arrow_forward
- A block of ice (m = 15.0 kg) with an attached rope is at rest on a frictionless surface. You pull the block with a horizontal force of 95.0 N for 1.54 s. a. Determine the magnitude of each force acting on the block of ice while you are pulling. b. With what speed is the ice moving after you are finished pulling?arrow_forwardA 1.00 103 car is pulling a 300.-kg trailer. Together, the car and trailer have an acceleration of 2.15 m/s2 in the positive x-direction. Neglecting frictional forces on the trailer, determine (a) the net force on the car, (b) the net force on the trailer, (c) the magnitude and direction of the force exerted by the trailer on the car, and (d) the resultant force exerted by the car on the road.arrow_forwardForensic Science Forensic science is the application of scientific techniques and methodology to discover the cause of a particular event such as an accident. Modern forensics have been used to solve historic crimes and mysteries such as the cause of death of King Tutankhamen of ancient Egypt and composer Ludwig van Beethoven in 1827. Forensic evidence is often admitted into a court case. For example, skid marks at an accident scene are used to find the initial speed of a car. Explain why skid marks are left by the car and how they may be used to find the cars initial speed.arrow_forward
- A 1 000-kg car is pulling a 300-kg trailer. Together, the car and trailer move forward with an acceleration of 2.15 m/s2. Ignore any force of air drag on the car and all frictional forces on the trailer. Determine (a) the net force on the car, (b) the net force on the trailer, (c) the force exerted by the trailer on the car, and (d) the resultant force exerted by the car on the road.arrow_forwardConstruct Your Own Problem Consider an astronaut in deep space cut free from her space ship and needing to get back to it. The astronaut has a few packages that she can throw away to move herself toward the ship. Construct a problem in which you calculate the time it takes her to get back by throwing all the packages at one time compared to throwing them one at a time. Among the things to be considered are the masses involved, the force she can exert on the packages through some distance, and the distance to the ship.arrow_forwardAn athlete grips a light rope that passes over a low-friction pulley attached to tire ceiling of a gym. A sack of sand precisely equal in weight to the athlete is tied to the other end of the rope. Both the sand and the athlete are initially at rest. The athlete climbs the rope, sometimes speeding up and slowing down as he does so. What happens to the sack of sand? Explain.arrow_forward
- A block of ice (m = 15.0 kg) with an attached rope is at rest on a frictionless surface. You pull the block with a horizontal force of 95.0 N for 1.54 s. a. Determine the magnitude of each force acting on the block of ice while you are pulling. b. With what speed is the ice moving after you are finished pulling? Repeat Problem 71, but this time you pull on the block at an angle of 20.0.arrow_forwardA steel ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.45 m. (a) Calculate its velocity just before it strikes the floor. (b) Calculate its velocity just after it leaves the floor on its way back up. (c) Calculate its acceleration during contact with the floor if that contact lasts (8.00105s). (d) How much did the ball compress during its collision with the floor, assuming the floor is absolutely rigid?arrow_forward(a) What is the strength of the weak nuclear force relative to the strong nuclear force? (b) What is the strength of the weak nuclear force relative to the electromagnetic force? Since the weak nuclear force acts at only very short distances, such as inside nuclei, where the strong and electromagnetic forces also act, it might seem surprising that we have any knowledge of it at all. We have such knowledge because the weak nuclear force is responsible for beta decay, a type of nuclear decay not explained by other forces.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY