
Assume that we are in another universe with different physical laws. Electrons in this universe are described by, four quantum numbers with meanings similar to those we use. We will call these quantum numbers p, q, r, and s. The rules for these quantum numbers are as follows:
P = 1, 2, 3, 4, 5, ….
q takes on positive odd integers and q ≤ p
r takes on all even integer values from −q to +q. (Zero is considered an even number.)
a. Sketch what the first four periods of lhe periodic table will look like in this universe.
b. What are the
c. Give an example, using elements in the first four rows, of ionic compounds with the formulas XY, XY2, X2Y, XY3, and X2Y3.
d. How many electrons can have p = 4, q = 3?
e. How many electrons can have p = 3, q = 0, r = 0?
f. How many electrons can have p = 6?
(a)

Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The sketch of the first four periods of the periodic table look like in the assumed universe.
Explanation of Solution
Explanation
Given
The given rules for four quantum numbers are as follows,
The sketch of the first four periods of the periodic table based on the given rules is drawn as,
The principle quantum number is one of the characteristic of the atomic orbitals. Here, it is denoted by the symbol
The meaning of the given four quantum numbers is similar with the actual quantum numbers. Therefore, the orbital representation is as follows,
(b)

Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The atomic number of the first four least reactive elements.
Answer to Problem 167CP
Answer
The atomic number of the first four least reactive elements are
Explanation of Solution
Explanation
The least reactive elements are those elements which contain completely filled subshell. Therefore, the atomic number of the elements which are least reactive is given as,
Here, all the atomic orbitals have the completely filled subshell.
(c)

Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The examples of the ionic compounds of the first four rows with the formula
Answer to Problem 167CP
Answer
The examples of the ionic compounds of the first four rows with the formula
Explanation of Solution
Explanation
Ionic compounds are those compounds which are combined by an ionic interaction. In these compounds the donation and acceptance of electrons occur. The overall charge on such compounds is to be neutralized. For example the compound
This is because both the elements have the charges
Therefore, combinations based on the number of electrons are given as,
(d)

Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The number of electrons for the values
Answer to Problem 167CP
Answer
The number of electrons have the values
Explanation of Solution
Explanation
The given quantum number values,
(e)

Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The number of electrons for the values
Answer to Problem 167CP
Answer
The number of electrons have the values
Explanation of Solution
Explanation
The given quantum number values,
(f)

Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The number of electrons for the values
Answer to Problem 167CP
Answer
The number of electrons have the values
Explanation of Solution
Explanation
The given quantum number values,
According to the calculated
Want to see more full solutions like this?
Chapter 2 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
- I need the nomenclature of this compound.arrow_forwardI need the nomenclature of this compoundarrow_forward2. Name the following hydrocarbons. (9 marks) a) HHHHHHHH H-C-C- H-O-S b) HCEC-CH3 H H H H H d) c) H C=C- H H H e) CH3 CH3 CH2CH=CH-CH=CHCH3 HHHH H-C-C-C-C-H H HH H f) large CH2CH3 pola H3C section lovels tower, able ocart firs g) Tower H3C-CH2 then in H3C-CH-CH-CH3 enblbano bne noitsidab Copyright © 2008. Durham Continuing Education CH3arrow_forward
- Name the molecules & Identify any chiral center CH3CH2CH2CHCH₂CH₂CH₂CH₂ OH CH₂CHCH2CH3 Br CH3 CH3CHCH2CHCH2CH3 CH3arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forward
- What is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




