EBK THE COSMIC PERSPECTIVE
9th Edition
ISBN: 9780135161760
Author: Voit
Publisher: VST
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 15EAP
What do we mean by the apparent retrograde motion of the planets? Why was this motion difficult for ancient astronomers to explain? How do we explain it today?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What do we mean by apparent retrograde motion of planets? Why was it difficult for ancient astronomers to explain? How do we explain it today?
The table below presents the semi-major axis (a) and Actual orbital period for all of the major planets in the solar system. Cube for each planet the semi-major axis in Astronomical Units. Then take the square root of this number to get the Calculated orbital period of each planet. Fill in the final row of data for each planet.
Table of Data for Kepler’s Third Law:
Table of Data for Kepler’s Third Law:
Planet aau = Semi-Major Axis (AU) Actual Planet Calculated Planet
Period (Yr) Period (Yr)
__________ ______________________ ___________ ________________
Mercury 0.39 0.24
Venus 0.72 0.62
Earth 1.00 1.00
Mars 1.52 1.88
Jupiter…
Use Kuiper Belt Object Haumea's eccentricity; e = 0.189, semimajor axis, a = 43.3
AU, and Period, P = 285 yrs, values to
a) calculate its perihelion and aphelion distances with Dp = a (1 e) and D₂ = a (1 + e),
b) verify if Haumea's a and P satisfy Kepler's third law for all objects orbiting the Sun:
p2 = a³.
Show your work.
Paragraph
Lato (Recom...
a) Dp=
Da=
V
b) p2=
BI
19px... v
U A
L
EQ
58°
...
Chapter 2 Solutions
EBK THE COSMIC PERSPECTIVE
Ch. 2 - Prob. 1VSCCh. 2 - Use the following questions to check your...Ch. 2 - Use the following questions to check your...Ch. 2 - Use the following questions to check your...Ch. 2 - Use the following questions to check your...Ch. 2 - Use the following questions to check your...Ch. 2 - Use the following questions to check your...Ch. 2 - Use the following questions to check your...Ch. 2 - Prob. 1EAPCh. 2 - Suppose you were making a model of the celestial...
Ch. 2 - On a clear, dark night, the sky may appear to be...Ch. 2 - Why does the local sky look like a dome? Define...Ch. 2 - Prob. 5EAPCh. 2 - What are circumpolar stars? Are more stars...Ch. 2 - What are latitude and longitude? Does the sky vary...Ch. 2 - What is the zodiac, and why do we see different...Ch. 2 - Suppose Earth’s axis had no tilt. Would we still...Ch. 2 - Briefly describe key facts about the solstices and...Ch. 2 - What is precession? How does it affect what we see...Ch. 2 - Briefly describe the Moon’s cycle of phases. Can...Ch. 2 - Why do we always see the same face of the Moon?Ch. 2 - Why don’t we see an eclipse at every new and full...Ch. 2 - What do we mean by the apparent retrograde motion...Ch. 2 - Prob. 16EAPCh. 2 - Prob. 17EAPCh. 2 - Prob. 18EAPCh. 2 - Prob. 19EAPCh. 2 - Prob. 20EAPCh. 2 - Does It Make Sense? Decide whether the statement...Ch. 2 - Does It Make Sense? Decide whether the statement...Ch. 2 - Prob. 23EAPCh. 2 - Does It Make Sense? Decide whether the statement...Ch. 2 - Does It Make Sense? Decide whether the statement...Ch. 2 - Does It Make Sense? Decide whether the statement...Ch. 2 - Quick Quiz Choose the best answer to each of the...Ch. 2 - Quick Quiz Choose the best answer to each of the...Ch. 2 - Quick Quiz Choose the best answer to each of the...Ch. 2 - Prob. 30EAPCh. 2 - Quick Quiz Choose the best answer to each of the...Ch. 2 - Quick Quiz Choose the best answer to each of the...Ch. 2 - Quick Quiz Choose the best answer to each of the...Ch. 2 - Quick Quiz Choose the best answer to each of the...Ch. 2 - Quick Quiz Choose the best answer to each of the...Ch. 2 - Quick Quiz Choose the best answer to each of the...Ch. 2 - Earth-Centered or Sun-Centered? Decide whether...Ch. 2 - Shadow Phases. Many people incorrectly guess that...Ch. 2 - Earth-Centered Language. Many common phrases...Ch. 2 - Group Activity: Lunar Phases and Time of Day. Make...Ch. 2 - New Planet. A planet in another solar system has a...Ch. 2 - Your View of the Sky. a. What are your latitude...Ch. 2 - View from the Moon. Assume you live on the Moon,...Ch. 2 - View from the Sun. Suppose you lived on the Sun...Ch. 2 - A Farther Moon. Suppose the distance to the Moon...Ch. 2 - A Smaller Earth. Suppose Earth were smaller. Would...Ch. 2 - Observing Planetary Motion. Find out which planets...Ch. 2 - 47. A Connecticut Yankee. Find the book A...Ch. 2 - Be sure to show all calculations clearly and state...Ch. 2 - Be sure to show all calculations clearly and state...Ch. 2 - Be sure to show all calculations clearly and state...Ch. 2 - Be sure to show all calculations clearly and state...Ch. 2 - Prob. 57EAPCh. 2 - Prob. 58EAPCh. 2 - Be sure to show all calculations clearly and state...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why might Tycho Brahe have hesitated to hire Kepler? Why do you suppose he appointed Kepler his scientific heir? What is limited about Keplers third law P2 = a3, where P is the time in units of years a planet takes to orbit the Sun and a is the planets average distance from the Sun in units of AU? (Hint: Look at the units.) What does this tell you about Kepler and his laws?arrow_forwardHow Do We Know? Why is it important that a theory make testable predictions?arrow_forwardDraw a picture that explains why Venus goes through phases the way the Moon does, according to the heliocentric cosmology. Does Jupiter also go through phases as seen from Earth? Why?arrow_forward
- Mars is 1.5 times as far away from the Sun as Earth. Earth’s axis is tilted at 23.5o compared to the ecliptic. The axis of Mars is tilted at 25o compared to the ecliptic. The atmosphere on Earth is 100 times as thick as the atmosphere on Mars. Which of the following statements is true? 1.)Mars is so cold that the water there is ice, while Earth does not have any ice 2.)When it is summer in Earth’s northern hemisphere, it is winter on Mars’ southern hemisphere 3.) Earth has seasons, Mars does not 4.) All of the water on Mars is frozen, while Earth has water in solid, liquid and gas formarrow_forwardDirection: Use your knowledge about solving equations to work out to complete the table below. Show your solution with proper units. R° (meters) T R° / T° { (meters) / Planet Average Times of Radius of Revolution (seconds) (seconds) } Planet's Orbit (Planet's year) R T (seconds) (meters) Mercury 5.7869 x 10:0 7.605 x 10 Venus 1.081 x 101 1.941 x 107 Earth 1.4996 x 10" 3.156 x 10 Mars 2.280 x 101 5.936 x 10 Jupiter 7.783 x 10" 3.743 x 10 Saturn 1.426 x 10 9.296 x 10arrow_forwardExplain the geocentric view of the universe.arrow_forward
- Would you expect the distance between Earth and Mars to vary? Briefly explain your answer.arrow_forwardIn the figure below, Planet X is moving in a perfectly circular orbit around its companion star.The time between each position shown is exactly one month: 1. Write down Kepler’s second Law of planetary motion.2. Does the planet obey Kepler’s second law? How do you know?3. If you carefully watched this planet during the entire orbit, would its speed be increasing, decreasing, orstaying the same? How do you know?arrow_forwardHow long (in Earth-Years) does it take Saturn to orbit the Sun? Use these values of (average) distance to the Sun. Venus: .72 A.U. Saturn: 9.5 A.U. Give your answer in (Earth) years to the correct number of significant figures.arrow_forward
- The Mars Robotic Lander for which we are making these calculations is designed to return samples of rock from Mars after a long time of collecting samples, exploring the area around the landing site, and making chemical analyses of rocks and dust in the landing area. One synodic period is required for Earth to be in the same place relative to mars as when it landed. Calculate the synodic period (in years) using the following formula: 1/Psyn = (1/PEarth) - (1/PMars) where PEarth is the sidereal period of the Earth (1 year) and PMars is the sidereal period of Mars. If 3/4 of a Martian year was spent collecting samples and exploring the terrain around the landing site, calculate how long the Mars Robotic Lander expedition took!arrow_forwardA new mystery planet is detected around our Sun. We measure its position relative to the Sun to be 2 AU at perihelion and 6 AU at aphelion. What is the semimajor axis of this planet's orbit (in AU)? With that information, what is the orbital period of that planet (in years)? If this planet has the same mass as Earth, how does the average force of gravity on the planet by the Sun compare with the average force of gravity on the Earth by the Sun? Please give a numerical ratio of the forces. (Hint: You can take the semimajor axis to represent the average position of the planets) 6:this is all one question with multiples steps. Thank youarrow_forwardWhat is an epicycle? How is it important in Ptolemy's explanation of the retrograde motions of the planets?.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY