
EBK PRINCIPLES OF ELECTRIC CIRCUITS
10th Edition
ISBN: 9780134880068
Author: Buchla
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 14TFQ
A resistor labeled 0R1 is 1 ohm.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A3 m long cantilever ABC is built-in at A, partially supported at B, 2 m from A,
with a force of 10 kN and carries a vertical load of 20 kN at C. A uniformly distributed
bad of 5 kN/m is also applied between A and B. Determine
(a) the values of the vertical reaction and built-in moment at A and
(b) the deflection of the free end C of the cantilever,
Develop an expression for the slope of the beam at any position and hence plot a slope diagram.
E = 208GN / (m ^ 2) and 1 = 24 * 10 ^ - 6 * m ^ 4
7. Consider the following feedback system with a proportional controller.
K
G(s)
The plant transfer function is given by
G(s) =
10
(s + 2)(s + 10)
You want the system to have a damping ratio of 0.3 for unit step response. What is the
value of K you need to choose to achieve the desired damping ratio? For that value of
K, find the steady-state error for ramp input and settling time for step input.
Hint: Sketch the root locus and find the point in the root locus that intersects with z =
0.3 line.
Create the PLC ladder logic diagram
for the logic gate circuit displayed in
Figure 7-35. The pilot light red (PLTR)
output section has three inputs: PBR,
PBG, and SW. Pushbutton red (PBR)
and pushbutton green (PBG) are inputs
to an XOR logic gate. The output of the
XOR logic gate and the inverted switch
SW) are inputs to a two-input AND
logic gate. These inputs generate the
pilot light red (PLTR) output.
The two-input AND logic gate output
is also fed into a two-input NAND logic
PBR
PBG
SW
TSW
PLTR
Figure 7-35. Logic gate circuit for Example 7-3.
PLTW
Goodheart-Willcox Publisher
gate. The temperature switch (TSW) is the other input to the NAND logic gate. The output generated from
the NAND logic gate is labeled pilot light white (PLTW).
Chapter 2 Solutions
EBK PRINCIPLES OF ELECTRIC CIRCUITS
Ch. 2 - How many coulombs do 93.8 1016 electrons...Ch. 2 - How much energy is required to move 50 C from one...Ch. 2 - If there are 2.0 A of current through the filament...Ch. 2 - A certain resistor has a yellow first band, a...Ch. 2 - A certain resistor has a yellow first band, a...Ch. 2 - What is the resistance indicated by 1K25?Ch. 2 - What is the cross-sectional area of a 0.0015 in....Ch. 2 - Use Table 2-3 to determine the resistance of 100...Ch. 2 - Related Problem In Figure 257 the switch is moved...Ch. 2 - The number of protons in the nucleus is the atomic...
Ch. 2 - The outermost shell of an atom contains the...Ch. 2 - Silicon and germanium are classed as insulators.Ch. 2 - The unit of charge is ampere.Ch. 2 - Like charges repel.Ch. 2 - Coulombs law shows the relationship of the energy...Ch. 2 - A battery stores charge.Ch. 2 - An ideal voltage source can provide a constant...Ch. 2 - A volt can be defined in terms of energy per...Ch. 2 - A fuel cell combines a fuel with an oxidizer to...Ch. 2 - The unit of current is coulomb.Ch. 2 - In a 5-band precision resistor, the fourth band is...Ch. 2 - A resistor with a single black band represents...Ch. 2 - A resistor labeled 0R1 is 1 ohm.Ch. 2 - A rheostat performs the same function as a...Ch. 2 - A strain gauge changes resistance in response to...Ch. 2 - Prob. 17TFQCh. 2 - A circular mil is a unit of area.Ch. 2 - The three basic measurements that can be done by a...Ch. 2 - If a GFCI breaker detects a difference in the hot...Ch. 2 - A neutral atom with an atomic number of three has...Ch. 2 - Electron orbits are called 1. shells 2. nuclei 3....Ch. 2 - Materials in which there is no current when...Ch. 2 - When placed close together, a positively charged...Ch. 2 - The charge on a single electron is 1. 6.25 1018 C...Ch. 2 - Potential difference is another term for 1. energy...Ch. 2 - The unit of energy is the 1. watt 2. coulomb 3....Ch. 2 - Which one of the following is not a type of energy...Ch. 2 - Which one of the following is not a possible...Ch. 2 - Electrical current is defined as 1. the reciprocal...Ch. 2 - There is no current in a circuit when 1. a switch...Ch. 2 - The primary purpose of a resistor is to 1....Ch. 2 - Wire resistance depends on the 1. type of material...Ch. 2 - Potentiometers and rheostats are types of 1....Ch. 2 - The current in a given circuit is not to exceed 22...Ch. 2 - The neutral line in a ac utility should 1. have...Ch. 2 - What is the charge in coulombs of the nucleus of a...Ch. 2 - What is the charge in coulombs of the nucleus of a...Ch. 2 - How many coulombs of charge do 50 1031 electrons...Ch. 2 - How many electrons does it take to make 80 C...Ch. 2 - Determine the voltage in each of the following...Ch. 2 - Five hundred joules of energy are used to move 100...Ch. 2 - What is the voltage of a battery that uses 24 J of...Ch. 2 - How much energy does a 12 V battery use to move...Ch. 2 - If a resistor with a current of 20 mA through it...Ch. 2 - List four common sources of voltage.Ch. 2 - Upon what principle is electrical generators...Ch. 2 - How does and electronic power supply differ from...Ch. 2 - A certain current source provides 100 mA to a 1 k...Ch. 2 - Determine the current in each of the following...Ch. 2 - Six-tenths coulomb passes a point in 3 s. What is...Ch. 2 - How long does it take 10 C to flow past a point if...Ch. 2 - How many coulombs pass a point in 0.1 s when the...Ch. 2 - 5.74 1017 electrons flow through a wire in 250...Ch. 2 - Find the conductance for each of the following...Ch. 2 - Find the resistance corresponding to the following...Ch. 2 - Determine the resistance values and tolerance for...Ch. 2 - Find the minimum and the maximum resistance within...Ch. 2 - Determine the color bands for each of the...Ch. 2 - Determine the resistance and tolerance of each of...Ch. 2 - Determine the resistance and percent tolerance for...Ch. 2 - From the selection of resistors in Figure 267,...Ch. 2 - Determine the color bands for each of the...Ch. 2 - Determine the resistance and tolerance of each of...Ch. 2 - Determine the color bands for each of the...Ch. 2 - The adjustable contact of a linear potentiometer...Ch. 2 - What resistance is indicated by 4K7?Ch. 2 - Determine the resistance and tolerance of each...Ch. 2 - Trace the current path in Figure 268(a) with the...Ch. 2 - With the switch in either position, redraw the...Ch. 2 - There is only one circuit in Figure 268 in which...Ch. 2 - In Figure 268, determine which (if any) circuits...Ch. 2 - In Figure 268, determine which (if any) circuits...Ch. 2 - Through which resistor in Figure 269 is there...Ch. 2 - Devise a switch arrangement whereby two voltage...Ch. 2 - Show how a single switch can be used to connect a...Ch. 2 - Show the placement of an ammeter and a voltmeter...Ch. 2 - Prob. 42PQCh. 2 - In Figure 271, how much voltage does each meter...Ch. 2 - In Figure 271, indicate how to connect an ammeter...Ch. 2 - In Figure 269, show the proper placement of...Ch. 2 - Show the proper placement of voltmeters to measure...Ch. 2 - What is the voltage reading of the meter in Figure...Ch. 2 - How much resistance is the ohmmeter in Figure...Ch. 2 - Determine the resistance indicated by each of the...Ch. 2 - What is the maximum resolution of a 4-digit DMM?Ch. 2 - Indicate how you would connect the multimeter in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Imaginary Axis (seconds) 1 6. Root locus for a closed-loop system with L(s) = is shown below. s(s+4)(s+6) 15 10- 0.89 0.95 0.988 0.988 -10 0.95 -15 -25 0.89 20 Root Locus 0.81 0.7 0.56 0.38 0.2 5 10 15 System: sys Gain: 239 Pole: -0.00417 +4.89 Damping: 0.000854 Overshoot (%): 99.7 Frequency (rad/s): 4.89 System: sys Gain: 16.9 Pole: -1.57 Damping: 1 Overshoot (%): 0 Frequency (rad/s): 1.57 0.81 0.7 0.56 0.38 0.2 -20 -15 -10 -5 5 10 Real Axis (seconds) From the values shown in the figure, compute the following. a) Range of K for which the closed-loop system is stable. b) Range of K for which the closed-loop step response will not have any overshoot. Note that when all poles are real, the step response has no overshoot. c) Smallest possible peak time of the system. Note that peak time is the smallest when wa is the largest for the dominant pole. d) Smallest possible settling time of the system. Note that peak time is the smallest when σ is the largest for the dominant pole.arrow_forwardFor a band-rejection filter, the response drops below this half power point at two locations as visualised in Figure 7, we need to find these frequencies. Let's call the lower frequency-3dB point as fr and the higher frequency -3dB point fH. We can then find out the bandwidth as f=fHfL, as illustrated in Figure 7. 0dB Af -3 dB Figure 7. Band reject filter response diagram Considering your AC simulation frequency response and referring to Figure 7, measure the following from your AC simulation. 1% accuracy: (a) Upper-3db Frequency (fH) = Hz (b) Lower-3db Frequency (fL) = Hz (c) Bandwidth (Aƒ) = Hz (d) Quality Factor (Q) =arrow_forwardP 4.4-21 Determine the values of the node voltages V1, V2, and v3 for the circuit shown in Figure P 4.4-21. 29 ww 12 V +51 Aia ww 22. +21 ΖΩ www ΖΩ w +371 ①1 1 Aarrow_forward
- 1. What is the theoretical attenuation of the output voltage at the resonant frequency? Answer to within 1%, or enter 0, or infinity (as “inf”) Attenuation =arrow_forwardWhat is the settling time for your output signal (BRF_OUT)? For this question, We define the settling time as the period of time it has taken for the output to settle into a steady state - ie when your oscillation first decays (aka reduces) to less than approximately 1/20 (5%) of the initial value. (a) Settling time = 22 μs Your last answer was interpreted as follows: Incorrect answer. Check 22 222 What is the peak to peak output voltage (BRF_OUT pp) at the steady state condition? You may need to use the zoom function to perform this calculation. Select a time point that is two times the settling time you answered in the question above. Answer to within 10% accuracy. (a) BRF_OUT pp= mVpp As you may have noticed, the output voltage amplitude is a tiny fraction of the input voltage, i.e. it has been significantly attenuated. Calculate the attenuation (decibels = dB) in the output signal as compared to the input based on the formula given below. Answer to within 1% accuracy.…arrow_forwardmy previous answers for a,b,d were wrong a = 1050 b = 950 d=9.99 c was the only correct value i got previously c = 100hz is correctarrow_forward
- V₁(t) ww ZRI ZLI ZL2 ZTH Zci VTH Zc21 Figure 8. Circuit diagram showing calculation approach for VTH and Z TH we want to create a blackbox for the red region, we want to use the same input signal conditions as previously the design of your interference ector circuit: Sine wave with a 1 Vpp, with a frequency of 100 kHz (interference) Square wave with 2.4Vpp, with a frequency of 10 kHz (signal) member an AC Thevenin equivalent is only valid at one frequency. We have chosen to calculate the Thevenin equivalent circuit (and therefore the ackbox) at the interference frequency (i.e. 100 kHz), and the signal frequency (i.e. 10 kHz) as these are the key frequencies to analyse. Your boss is assured you that the waveform converter module has been pre-optimised to the DAB Receiver if you use the recommended circuit topology.arrow_forwardVs(t) + v(t) + vi(t) ZR ZL Figure 1: Second order RLC circuit Zc + ve(t) You are requested to design the circuit shown in Figure 1. The circuit is assumed to be operating at its resonant frequency when it is fed by a sinusoidal voltage source Vs (t) = 2sin(le6t). To help design your circuit you have been given the value of inductive reactance ZL = j1000. Assume that the amplitude of the current at resonance is Is (t) = 2 mA. Based on this information, answer the following to help design your circuit. Use cartesian notation for your answers, where required.arrow_forwardWhat is the attenuation at the resonant frequency? You should use the LTSpice cursors for your measurement. Answer to within 1% accuracy, or enter 0, or infinity (as "inf") (a) Attenuation (dB) = dB Check You may have noticed that it was significantly easier to use frequency-domain "AC" simulation to measure the attenuation, compared to the steps we performed in the last few questions. (i.e. via a time-domain "transient" simulation). AC analysis allows us to observe and quantify large scale positive or negative changes in a signal of interest across a wide range of different frequencies. From the response you will notice that only frequencies that are relatively close to 100 kHz have been attenuated. This is the result of the Band-reject filter you have designed, and shows the 'rejection' (aka attenuation) of any frequencies that lie in a given band. The obvious follow-up question is how do we define this band? We use a quantity known as the bandwidth. A commonly used measurement for…arrow_forward
- V₁(t) ww ZRI ZLI ZL2 ZTH Zci VTH Zc21 Figure 8. Circuit diagram showing calculation approach for VTH and Z TH we want to create a blackbox for the red region, we want to use the same input signal conditions as previously the design of your interference ector circuit: Sine wave with a 1 Vpp, with a frequency of 100 kHz (interference) Square wave with 2.4Vpp, with a frequency of 10 kHz (signal) member an AC Thevenin equivalent is only valid at one frequency. We have chosen to calculate the Thevenin equivalent circuit (and therefore the ackbox) at the interference frequency (i.e. 100 kHz), and the signal frequency (i.e. 10 kHz) as these are the key frequencies to analyse. Your boss is assured you that the waveform converter module has been pre-optimised to the DAB Receiver if you use the recommended circuit topology.arrow_forwardVs(t) + v(t) + vi(t) ZR ZL Figure 1: Second order RLC circuit Zc + ve(t) You are requested to design the circuit shown in Figure 1. The circuit is assumed to be operating at its resonant frequency when it is fed by a sinusoidal voltage source Vs (t) = 2sin(le6t). To help design your circuit you have been given the value of inductive reactance ZL = j1000. Assume that the amplitude of the current at resonance is Is (t) = 2 mA. Based on this information, answer the following to help design your circuit. Use cartesian notation for your answers, where required.arrow_forwardFor a band-rejection filter, the response drops below this half power point at two locations as visualised in Figure 7, we need to find these frequencies. Let's call the lower frequency-3dB point as fr and the higher frequency -3dB point fH. We can then find out the bandwidth as f=fHfL, as illustrated in Figure 7. 0dB Af -3 dB Figure 7. Band reject filter response diagram Considering your AC simulation frequency response and referring to Figure 7, measure the following from your AC simulation. 1% accuracy: (a) Upper-3db Frequency (fH) = Hz (b) Lower-3db Frequency (fL) = Hz (c) Bandwidth (Aƒ) = Hz (d) Quality Factor (Q) =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning

Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
How does an Antenna work? | ICT #4; Author: Lesics;https://www.youtube.com/watch?v=ZaXm6wau-jc;License: Standard Youtube License