(a) Interpretation: The given number should be converted into standard scientific notation. Concept Introduction: Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10. For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
(a) Interpretation: The given number should be converted into standard scientific notation. Concept Introduction: Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10. For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
The given number should be converted into standard scientific notation.
Concept Introduction:
Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
Expert Solution
Answer to Problem 14QAP
3.125×103.
Explanation of Solution
The given measurement is 10.00032. It is equal to 3125, to convert this into scientific notation; the decimal will be shift four places to the right. The decimal will be placed after first digit, after placing the decimal, there will be three digits after the decimal. The power of 10 will be + 3 and the scientific notation will be 3.125×103.
Interpretation Introduction
(b)
Interpretation:
The given number should be converted into standard scientific notation.
Concept Introduction:
Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
Expert Solution
Answer to Problem 14QAP
1.0×106.
Explanation of Solution
The given measurement is 10310−3. It is equal to 106, to convert this into scientific notation; the decimal number should be written ranges from 1 to 10 thus, the scientific notation will be 1.0×106.
Interpretation Introduction
(c)
Interpretation:
The given number should be converted into standard scientific notation.
Concept Introduction:
Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
Expert Solution
Answer to Problem 14QAP
1.0×100.
Explanation of Solution
The given measurement is 103103. It is equal to 1, to convert this into scientific notation; the decimal number should be written ranges from 1 to 10 thus, the scientific notation will be 1.0×100.
Interpretation Introduction
(d)
Interpretation:
The given number should be converted into standard scientific notation.
Concept Introduction:
Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
Expert Solution
Answer to Problem 14QAP
1.818×10−5.
Explanation of Solution
The given measurement is 155, 000. It is equal to 0.00001818, to convert this into scientific notation; the decimal number should be written ranges from 1 to 10 thus, decimal will move five digits to the right. Since, the decimal is moving right, the power of 10 will be negative. Thus, the scientific notation will be 1.818×10−5.
Interpretation Introduction
(e)
Interpretation:
The given number should be converted into standard scientific notation.
Concept Introduction:
Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
Expert Solution
Answer to Problem 14QAP
1.0×107.
Explanation of Solution
The given measurement is (105)(104)(10−4)/10−2. It is equal to 107, to convert this into scientific notation; the decimal number should be written ranges from 1 to 10 thus, the scientific notation will be 1.0×107.
Interpretation Introduction
(f)
Interpretation:
The given number should be converted into standard scientific notation.
Concept Introduction:
Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
Expert Solution
Answer to Problem 14QAP
1.0×106.
Explanation of Solution
The given measurement is 43.2(4.32×10−5). It is equal to 106, to convert this into scientific notation; the decimal number should be written ranges from 1 to 10 thus the scientific notation will be 1.0×106.
Interpretation Introduction
(g)
Interpretation:
The given number should be converted into standard scientific notation.
Concept Introduction:
Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
Expert Solution
Answer to Problem 14QAP
1.0×10−7.
Explanation of Solution
The given measurement is (4.32×10−5)/432. It is equal to 10−7, to convert this into scientific notation; the decimal number should be written ranges from 1 to 10 thus the scientific notation will be 1.0×10−7.
Interpretation Introduction
(h)
Interpretation:
The given number should be converted into standard scientific notation.
Concept Introduction:
Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
Expert Solution
Answer to Problem 14QAP
1.0×101.
Explanation of Solution
The given measurement is 1/(105)(10−6). It is equal to 101, to convert this into scientific notation; the decimal number should be written ranges from 1 to 10 thus decimal thus, the scientific notation will be 1.0×101.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
3. Titanium(III) chloride can be used to catalyze the polymerization of ethylene. It is prepared by hydrogen reduction of
Titanium(IV) chloride. Reaction of hydrogen gas with titanium(IV) chloride gas produces solid titanium(III) chloride and
hydrogen chloride gas.
(a) Write a BALANCED chemical reaction for the preparation of titanium(III) chloride
(b) A 250 L reaction vessel at 325°C is filled with hydrogen gas to a pressure of 1.3 atm. Titanium(IV) chloride is then added
to bring the total pressure to 3.00 atm. How many grams of titanium(III) chloride will be produced after completion of the
reaction?
(c) What will be the pressure of the resulting hydrogen chloride gas that is also produced?
1. Sodium azide (NaN3) is the primary chemical substance used in automobile air bags. Upon impact, the decomposition of
sodium azide is initiated to produce sodium metal and nitrogen gas which then inflates the bag. How many liters of
nitrogen gas are produced at 1.15 atm and 30.0°C when 145.0 grams of sodium azide decomposes?
2. Calcium carbonate (such as that in limestone) reacts with aqueous hydrochloric acid to produce carbon dioxide, aqueous
calcium chloride and water. How many liters of carbon dioxide are produced at 20°C and 745 torr when 3.583 grams of
calcium carbonate is dissolved in solution containing 1.550 grams of hydrochloric acid?
Show all work (where appropriate) for full credit.
1. Describe (steps, equipment and quantities) how to accurately prepare 250.0 mL of a 0.0075
M solution of NaCl (aq) from a 500 mL, 0.0500 M stock solution.
2. Describe (steps, equipment and quantities) how to accurately prepare 250.0 mL of a 0.0075
M solution of NaCl (aq) from 100 g of solid NaCl.
Chapter 2 Solutions
Student Solutions Manual for Zumdahl/DeCoste's Introductory Chemistry: A Foundation, 9th