Bam!— Apollo 15 Lands on the Moon The first word spoken on the surface of the Moon after Apollo 15 landed on July 30, 1971, was “Bam!” This was James Irwin’s involuntary reaction to their rather bone-jarring touchdown. “We did hit harder than any of the other flights!” says Irwin. “And I was startled, obviously, when I said. Bam!’" The reason for the “firm touchdown” of Apollo 15, as pilot David Scott later characterized it, was that the rocket engine was shut off a bit earlier than planned, when the lander was still 4.30 ft above the lunar surface and moving downward with a speed of 0.500 ft/s. From that point on the lander descended in lunar free fall, with an acceleration of 1.62 m/s 2 . As a result, the landing speed of Apollo 15 was by far the largest of any of the Apollo missions In comparison, Neil Armstrong s landing speed on Apollo 11 was the lowest at 1.7 ft/s—he didn’t shut off the engine until the footpads were actually on the surface. Apollos 12 , 14 , and 17 all landed with speeds between 3.0 and 3.5 ft/s. To better understand the descent of Apollo 15, we show its trajectory during the final stages of landing in Figure 2-47 (a) In Figure 2-47 (b) we show a variety of speed-versus-time plots. (a) (b) FIGURE 2-4 7 Problems 108, 109, 110, and 111 108. • How much time did it take for the lander to drop the final 4.30 ft to the Moon’s surface? A. A. 1.18s B. B. 1.37 s C. C. 178s D. D. 2.36 s
Bam!— Apollo 15 Lands on the Moon The first word spoken on the surface of the Moon after Apollo 15 landed on July 30, 1971, was “Bam!” This was James Irwin’s involuntary reaction to their rather bone-jarring touchdown. “We did hit harder than any of the other flights!” says Irwin. “And I was startled, obviously, when I said. Bam!’" The reason for the “firm touchdown” of Apollo 15, as pilot David Scott later characterized it, was that the rocket engine was shut off a bit earlier than planned, when the lander was still 4.30 ft above the lunar surface and moving downward with a speed of 0.500 ft/s. From that point on the lander descended in lunar free fall, with an acceleration of 1.62 m/s 2 . As a result, the landing speed of Apollo 15 was by far the largest of any of the Apollo missions In comparison, Neil Armstrong s landing speed on Apollo 11 was the lowest at 1.7 ft/s—he didn’t shut off the engine until the footpads were actually on the surface. Apollos 12 , 14 , and 17 all landed with speeds between 3.0 and 3.5 ft/s. To better understand the descent of Apollo 15, we show its trajectory during the final stages of landing in Figure 2-47 (a) In Figure 2-47 (b) we show a variety of speed-versus-time plots. (a) (b) FIGURE 2-4 7 Problems 108, 109, 110, and 111 108. • How much time did it take for the lander to drop the final 4.30 ft to the Moon’s surface? A. A. 1.18s B. B. 1.37 s C. C. 178s D. D. 2.36 s
The first word spoken on the surface of the Moon after Apollo 15 landed on July 30, 1971, was “Bam!” This was James Irwin’s involuntary reaction to their rather bone-jarring touchdown. “We did hit harder than any of the other flights!” says Irwin. “And I was startled, obviously, when I said. Bam!’"
The reason for the “firm touchdown” of Apollo 15, as pilot David Scott later characterized it, was that the rocket engine was shut off a bit earlier than planned, when the lander was still 4.30 ft above the lunar surface and moving downward with a speed of 0.500 ft/s. From that point on the lander descended in lunar free fall, with an acceleration of 1.62 m/s2. As a result, the landing speed of Apollo 15 was by far the largest of any of the Apollo missions In comparison, Neil Armstrong s landing speed on Apollo 11 was the lowest at 1.7 ft/s—he didn’t shut off the engine until the footpads were actually on the surface. Apollos 12, 14, and 17 all landed with speeds between 3.0 and 3.5 ft/s.
To better understand the descent of Apollo 15, we show its trajectory during the final stages of landing in Figure 2-47 (a) In Figure 2-47 (b) we show a variety of speed-versus-time plots.
(a)
(b)
FIGURE 2-47
Problems 108, 109, 110, and 111
108. • How much time did it take for the lander to drop the final 4.30 ft to the Moon’s surface?
In a total solar eclipse, it is possible for the moon to momentarily cover the sun for an observer on the
Earth's surface since:
a) the angle that covers the diameter of the moon is the same that covers the diameter of the sun
during the eclipse.
b) the tangential acceleration of the moon and the sun is the same while the eclipse occurs.
c) the length of the arcs corresponding to the diameters of the sun and the moon are equal during
the eclipse.
d) the angular speed of the moon and the sun is equal while the eclipse occurs.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.