
(a)
Interpretation:
The formula and the name of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as
(a)

Answer to Problem 105AE
(a)
The formula of the compound is
The name of the binary compound is calcium nitride.
Explanation of Solution
To determine: The formula and the name of the binary compound formed from
The required compound is Calcium nitride
Calcium belongs to the Group
Nitrogen is a non-metal of the
Hence, its oxidation state
So, the formula of the given compound is
The name of the binary compound.
The name of the binary compound is calcium nitride.
The name of the cation present is Calcium
The anion present is Nitride
Calcium only exists in
Hence, the naming of this binary compound is, Calcium nitride.
(b)
Interpretation:
The formula and the name of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as
(b)

Answer to Problem 105AE
(b)
The formula of the compound is
The name of the binary compound is Potassium oxide.
Explanation of Solution
To determine: The formula and the name of the binary compound formed from
The required compound is Potassium oxide
Potassium belongs to the Group
Oxygen belongs to the
Hence, its oxidation state
So, the formula of the given compound is
The name of the binary compound.
The name of the binary compound is Potassium oxide.
The name of the cation present is Potassium
The anion present is Oxide
Potassium only exists in
Hence, the naming of this binary compound is, Potassium oxide.
(c)
Interpretation:
The formula and the name of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as
(c)

Answer to Problem 105AE
(c)
The formula of the compound is
The name of the binary compound is Rubidium fluoride.
Explanation of Solution
To determine: The formula and the name of the binary compound formed from
The required compound is Rubidium fluoride
Rubidium belongs to the Group
Fluorine belongs to the
Hence, its oxidation state
So, the formula of the given compound is
The name of the binary compound.
The name of the binary compound is Rubidium fluoride.
The name of the cation present is Rubidium
The anion present is Fluoride
Hence, the naming of this binary compound is, Rubidium fluoride.
(d)
Interpretation:
The formula and the name of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as
(d)

Answer to Problem 105AE
(d)
The formula of the compound is
The name of the binary compound is Magnesium sulphide.
Explanation of Solution
To determine: The formula and the name of the binary compound formed from
The required compound is Magnesium sulphide
Magnesium belongs to the Group
Sulphur belongs to the
Hence, its oxidation state
So, the formula of the given compound is
The name of the binary compound.
The name of the binary compound is Magnesium sulphide.
The name of the cation present is Magnesium
The anion present is Sulphide
Hence, the naming of this binary compound is, Magnesium sulphide.
(e)
Interpretation:
The formula and the name of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as
(e)

Answer to Problem 105AE
(e)
The formula of the compound is
The name of the binary compound is Barium iodide.
Explanation of Solution
To determine: The formula and the name of the binary compound formed from
The required compound is Barium iodide
Barium belongs to the Group
Iodine belongs to the
Hence, its oxidation state
So, the formula of the given compound is
The name of the binary compound.
The name of the binary compound is barium iodide.
The name of the cation present is Barium
The anion present is Iodide
Hence, the naming of this binary compound is, Barium iodide.
(f)
Interpretation:
The formula and the name of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as
(f)

Answer to Problem 105AE
(f)
The formula of the compound is
The name of the binary compound is Aluminium selenide.
Explanation of Solution
To determine: The formula and the name of the binary compound formed from
The required compound is Aluminium selenide
Aluminium belongs to the Group
Selenium belongs to the
Hence, its oxidation state
So, the formula of the given compound is
The name of the binary compound.
The name of the binary compound is Aluminium selenide.
The name of the cation present is Aluminium
The anion present is Selenide
Hence, the naming of this binary compound is, Aluminium selenide.
(g)
Interpretation:
The formula and the name of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as
(g)

Answer to Problem 105AE
(g)
The formula of the compound is
The name of the binary compound is Cesium phosphide.
Explanation of Solution
To determine: The formula and the name of the binary compound formed from
The required compound is Cesium phosphide
Cesium belongs to the Group
Phosphorous belongs to the
Hence, its oxidation state
So, the formula of the given compound is
The name of the binary compound.
The name of the binary compound is Cesium phosphide.
The name of the cation present is Cesium
The anion present is Phosphide
Hence, the naming of this binary compound is, Cesium phosphide.
(h)
Interpretation:
The formula and the name of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as
(h)

Answer to Problem 105AE
(h)
The formula of the compound is
The name of the binary compound is Indium(III) bromide.
Explanation of Solution
To determine: The formula and the name of the binary compound formed from
The required compound is Indium(III) bromide
Indium has an oxidation state of
Oxidation state exhibited by Bromine is
So, the formula of the given compound is
The name of the binary compound.
The name of the binary compound is Indium(III) bromide.
The name of the cation present is Indium
The anion present is Bromide
Here, indium exhibits the
Hence, the naming of this binary compound is, Indium(III) bromide.
Want to see more full solutions like this?
Chapter 2 Solutions
Study Guide for Zumdahl/Zumdahl/DeCoste’s Chemistry, 10th Edition
- What is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forward
- Look at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





