Concept explainers
Credit Card Agreement. The following rules are among the provisions of a credit card agreement.
For the regular plan, the minimum payment due is the greater of $10.00 or 5% of the new balance shown on your Statement (rounded to the nearest $1.00) plus unpaid late fees and returned check fees, and any amounts shown as past due on your statement.
If make a purchase a regular plan, no finance charges will be imposed in any billing period in which (i)
there is no previous balance or (ii) payments received and credits issued by the payment due date, which is 25 days after the statement closing date shown on your last statement, equal or exceed the previous balance. If the new balance is not satisfied in full by the payment due date shown on your last statement there will be a charge on each purchase from the date of purchase.
a. If the new balance in your account is $8 and have $35 in unpaid late fees, what is your minimum payment due?
b. Suppose you have a previous balance $150 and you pay $200 one month after the statement closing date. Will you be assessed a finance charge?
c. In part (b) if you make a purchase on the same day that you make the $200 payment will a finance charge be assessed on that purchase?
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Using & Understanding Mathematics, Books a la Carte edition (7th Edition)
- 1.2.17. (!) Let G,, be the graph whose vertices are the permutations of (1,..., n}, with two permutations a₁, ..., a,, and b₁, ..., b, adjacent if they differ by interchanging a pair of adjacent entries (G3 shown below). Prove that G,, is connected. 132 123 213 312 321 231arrow_forwardProve that Pleas -- Pleas A collection, Alof countinoes Sunction on a toplogical spacex separetes Point from closed setsinx (f the set S" (V) for KEA and V open set in xx from base for Top onx. @If faixe A} is collection of countinuous fancton on a top space X Wich Separates Points from closed sets then the toplogy on x is weak Top logy.arrow_forwardWrite the equation line shown on the graph in slope, intercept form.arrow_forward
- 1.2.15. (!) Let W be a closed walk of length at least 1 that does not contain a cycle. Prove that some edge of W repeats immediately (once in each direction).arrow_forward1.2.18. (!) Let G be the graph whose vertex set is the set of k-tuples with elements in (0, 1), with x adjacent to y if x and y differ in exactly two positions. Determine the number of components of G.arrow_forward1.2.17. (!) Let G,, be the graph whose vertices are the permutations of (1,..., n}, with two permutations a₁, ..., a,, and b₁, ..., b, adjacent if they differ by interchanging a pair of adjacent entries (G3 shown below). Prove that G,, is connected. 132 123 213 312 321 231arrow_forward
- 1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k components, where k is the greatest common divisor of {n, r,s}.arrow_forward1.2.20. (!) Let u be a cut-vertex of a simple graph G. Prove that G - v is connected. עarrow_forward1.2.12. (-) Convert the proof at 1.2.32 to an procedure for finding an Eulerian circuit in a connected even graph.arrow_forward
- 1.2.16. Let e be an edge appearing an odd number of times in a closed walk W. Prove that W contains the edges of a cycle through c.arrow_forward1.2.11. (−) Prove or disprove: If G is an Eulerian graph with edges e, f that share vertex, then G has an Eulerian circuit in which e, f appear consecutively. aarrow_forwardBy forming the augmented matrix corresponding to this system of equations and usingGaussian elimination, find the values of t and u that imply the system:(i) is inconsistent.(ii) has infinitely many solutions.(iii) has a unique solutiona=2 b=1arrow_forward
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning