
(a)
To determine: The standard enthalpy change, and entropy change for the given reaction.
Solution: The standard enthalpy change for the given reaction is − 196.6 kJ and the standard entropy change for the reaction is 189.6 J/K .
Explanation:
Given
The balanced chemical reaction is,
2 SO 2 ( g ) + O 2 ( g ) → 2 SO 3 ( g )
The standard entropy change of the reaction is calculated by the formula,
Δ H 0 = ∑ n Δ H 0 ( products ) − ∑ m Δ H 0 ( reactants ) = 2 Δ H SO 3 ( g ) 0 − ( 2 Δ H SO 2 ( g ) 0 + Δ H O 2 ( g ) 0 )
Substitute the standard values of Δ H SO 2 ( g ) 0 , Δ H O 2 ( g ) 0 and Δ H SO 3 ( g ) 0 from appendix C in above equation.
Δ H 0 = 2 × ( − 395.2 kJ/mol ) − ( 2 mol × ( − 296.9 kJ/mol ) + 1 mol × 0.0 kJ/mol ) = − 196.6 kJ
Thus, the standard enthalpy change for the given reaction is − 196.6 kJ .
Now, calculate the standard entropy change for the given reaction.
The balanced chemical reaction is,
2 SO 2 ( g ) + O 2 ( g ) → 2 SO 3 ( g )
The standard entropy change of the reaction is calculated by the formula,
Δ S 0 = ∑ n Δ S 0 ( products ) − ∑ m Δ S 0 ( reactants ) = 2 Δ S SO 3 ( g ) 0 − ( 2 Δ S SO 2 ( g ) 0 + Δ S O 2 ( g ) 0 )
Substitute the standard values of Δ S SO 2 ( g ) 0 , Δ S O 2 ( g ) 0 and Δ S SO 3 ( g ) 0 from appendix C in the above equation.
Δ S 0 = 2 × 256.2 J/mol ⋅ K − ( 2 mol × 248.5 J/mol ⋅ K + 1 mol × 205.0 J/mol ⋅ K ) = − 189.6 J/K
Thus, the standard entropy change for the given reaction is − 189.6 J/K .
Conclusion:
The standard enthalpy change for the given reaction is − 196.6 kJ and the standard entropy change for the reaction is 189.6 J/K .
To determine: The standard enthalpy change, and entropy change for the given reaction.
Solution: The standard enthalpy change for the given reaction is
Explanation:
Given
The balanced
The standard entropy change of the reaction is calculated by the formula,
Substitute the standard values of
Thus, the standard enthalpy change for the given reaction is
Now, calculate the standard entropy change for the given reaction.
The balanced chemical reaction is,
The standard entropy change of the reaction is calculated by the formula,
Substitute the standard values of
Thus, the standard entropy change for the given reaction is
Conclusion:
The standard enthalpy change for the given reaction is
(b)
To determine: The standard free energy change for the given reaction.

Want to see the full answer?
Check out a sample textbook solution
Chapter 19 Solutions
Chemistry: The Central Science (14th Edition)
- Given the cell: Pt l H2(g) l dis X:KCl (sat) l Hg2Cl2(s) l Hg l Pt. Calculate the emf of the cell as a function of pH.arrow_forwardThe decimolar calomel electrode has a potential of 0.3335 V at 25°C compared to the standard hydrogen electrode. If the standard reduction potential of Hg22+ is 0.7973 V and the solubility product of Hg2Cl2 is 1.2x 10-18, find the activity of the chlorine ion at this electrode.Data: R = 8.314 J K-1 mol-1, F = 96485 C mol-1, T = 298.15 K.arrow_forward2. Add the following group of numbers using the correct number of significant figures for the answer. Show work to earn full credit such as rounding off the answer to the correct number of significant figures. Replace the question marks with the calculated answers or write the calculated answers near the question marks. 10916.345 37.40832 5.4043 3.94 + 0.0426 ? (7 significant figures)arrow_forward
- The emf at 25°C of the cell: Pt l H2(g) l dis X:KCl (sat) l Hg2Cl2(s) l Hg l Pt was 612 mV. When solution X was replaced by normal phosphate buffer solution with a pH of 6.86, the emf was 741 mV. Calculate the pH of solution X.arrow_forwardIndicate how to calculate the potential E of the reaction Hg2Cl2(s) + 2e ⇄ 2Hg + 2Cl- as a function of the concentration of Cl- ions. Data: the solubility product of Hg2Cl2.arrow_forwardHow can Beer’s Law be used to determine the concentration in a selected food sample. Provide an in-depth discussion and examples of this.arrow_forward
- b) H3C- H3C Me CH 3 I HN Me H+arrow_forwardUsing Luther's rule, determine the reference potentials of the electrodes corresponding to the low stability systems Co³+/Co and Cr²+/Cr from the data in the table. Electrodo ΕΝ Co²+/Co Co3+/Co²+ -0,28 +1,808 Cr³+ / Cr -0,508 Cr3+ / Cr²+ -0,41arrow_forwardThe molecule PYRIDINE, 6tt electrons and is there pore aromuntre and is Assigned the Following structure contenus Since aromatk moleculey undergo electrophilic allomatic substitution, Pyridine should undergo The Following reaction + HNO3 12504 a. write all of the possible Mononitration Products that could Result From this roaction Based upon the reaction the reaction mechanism determine which of these producty would be the major Product of the hegetionarrow_forward
- Using Benzene as starting materia Show how each of the Following molecules could Ve synthesked 9. CHI d. 10450 b 0 -50311 ८ City -5034 1-0-650 e NO2arrow_forwardBA HBr of the fol 1)=MgCI 2) H₂O major NaOEt Ts Cl Py (pyridine) 1) 03 2) Me2S 1arrow_forward4. Provide a clear arrow-pushing mechanism for the following reactions. Do not skip proton transfers, do not combine steps, and make sure your arrows are clear enough to be interpreted without ambiguity. a) NHBoc ⚫OBn HO. H3C CO2CH3 -OBn H3C H3C. H3C. NHBOC CI CO2CH3arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





