(a)
To determine: If the entropy of the system is increasing or decreasing in the process of photodissociation of O 2 ( g ) .
Solution: The entropy of the system is increasing in the given process.
Explanation:
The process of photodissociation of oxygen gas involves the breaking of bonds which results in the increase in volume and vibrations in the system. Due to this, the randomness of the system increases which results in the increase in entropy of the system.
Conclusion:
The entropy of the system is increasing in the given process.
To determine: If the entropy of the system is increasing or decreasing in the process of photodissociation of
Solution: The entropy of the system is increasing in the given process.
Explanation:
The process of photodissociation of oxygen gas involves the breaking of bonds which results in the increase in volume and vibrations in the system. Due to this, the randomness of the system increases which results in the increase in entropy of the system.
Conclusion:
The entropy of the system is increasing in the given process.
(b)
To determine: If the entropy of system increasing or decreasing in the process of formation of ozone from oxygen molecules and oxygen atoms.
(c)
To determine: If the entropy of the system is increasing or decreasing in the process of diffusion of CFCs into the stratosphere.
(d)
To determine: If the entropy of the system is increasing or decreasing in the process of desalination of water by reverse osmosis.
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
Chemistry: The Central Science (14th Edition)
- ✓ aw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. C Cl HO–CH O Substitution will not occur at a significant rate. Explanation Check -3 ☐ : + D Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Cearrow_forwardPlease correct answer and don't used hand raitingarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Determine whether the following reaction is an example of a nucleophilic substitution reaction: Br OH HO 2 -- Molecule A Molecule B + Br 义 ollo 18 Is this a nucleophilic substitution reaction? If this is a nucleophilic substitution reaction, answer the remaining questions in this table. Which of the reactants is referred to as the nucleophile in this reaction? Which of the reactants is referred to as the organic substrate in this reaction? Use a ŏ + symbol to label the electrophilic carbon that is attacked during the substitution. Highlight the leaving group on the appropriate reactant. ◇ Yes O No O Molecule A Molecule B Molecule A Molecule B टेarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Pheromone G of the maize stalk borer, chilo partelus, can be synthesized based on the partial scheme shown below. Complete the scheme by identifying the structures of the intermediate compounds A, B, C, D, E, F and pheromone G. Indicate stereochemistry where relevantarrow_forwardQ8: Draw the resonance structures for the following molecule. Show the curved arrows (how you derive each resonance structure). Circle the major resonance contributor. одarrow_forwardQ9: Explain why compound I is protonated on O while compound II is protonated on N. NH2 DD I II NH2arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY