ORGANIC CHEMISTRY-STD.WILEY PLUS CARD
ORGANIC CHEMISTRY-STD.WILEY PLUS CARD
3rd Edition
ISBN: 9781119340515
Author: Klein
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 19, Problem 88IP
Interpretation Introduction

Interpretation: A synthetic route for conversion of compound 1 into compound 2 has to be identified where a Wittig reaction is involved.

Concept introduction:

In a reaction, PCC (pyridinium chlorochromate) is used to oxidize alcohols to carbonyls. Primary alcohols get converted to aldehydes whereas secondary alcohols get converted to ketones when treated with PCC.

Wittig Reaction: It is an organic reaction where an aldehyde or a ketone gets converted to an alkene by replacing carbonyl group by a C=C bond. A phosphorous ylide is used for this conversion. It is a neutral molecule where a positively charged phosphorous is attached to a negatively charged

  ORGANIC CHEMISTRY-STD.WILEY PLUS CARD, Chapter 19, Problem 88IP

Hydroboration reaction: The reaction involves addition of BH3 over alkene which makes BH2 to bond with less substituted position of carbon-carbon double bonds and H to more substituted position of carbon-carbon double bonds which finally carbon containing BH2 gets oxidized in order to achieve the product with less substitution.

Oxidation: If electrons are moved from a species or oxygen atoms are added to a species or hydrogen atom gets removed from a species during a chemical reaction is known as oxidation.

Anti-Markovnikov’s Addition Rule: The unsymmetrical alkene in a chemical compound reacts with hydrogen halide in a way, where halide ions attacks and bond to the less substitution position of carbon-carbon double bond.

Blurred answer
Students have asked these similar questions
(a 4 shows scanning electron microscope (SEM) images of extruded actions of packing bed for two capillary columns of different diameters, al 750 (bottom image) and b) 30-μm-i.d. Both columns are packed with the same stationary phase, spherical particles with 1-um diameter. A) When the columns were prepared, the figure shows that the column with the larger diameter has more packing irregularities. Explain this observation. B) Predict what affect this should have on band broadening and discuss your prediction using the van Deemter terms. C) Does this figure support your explanations in application question 33? Explain why or why not and make any changes in your answers in light of this figure. Figure 4 SEM images of sections of packed columns for a) 750 and b) 30-um-i.d. capillary columns.³
fcrip = ↓ bandwidth Il temp 32. What impact (increase, decrease, or no change) does each of the following conditions have on the individual components of the van Deemter equation and consequently, band broadening? Increase temperature Longer column Using a gas mobile phase instead of liquid Smaller particle stationary phase Multiple Paths Diffusion Mass Transfer
34. Figure 3 shows Van Deemter plots for a solute molecule using different column inner diameters (i.d.). A) Predict whether decreasing the column inner diameters increase or decrease bandwidth. B) Predict which van Deemter equation coefficient (A, B, or C) has the greatest effect on increasing or decreasing bandwidth as a function of i.d. and justify your answer. Figure 3 Van Deemter plots for hydroquinone using different column inner diameters (i.d. in μm). The data was obtained from liquid chromatography experiments using fused-silica capillary columns packed with 1.0-μm particles. 35 20 H(um) 큰 20 15 90 0+ 1500 100 75 550 01 02 594 05 μ(cm/sec) 30 15 10

Chapter 19 Solutions

ORGANIC CHEMISTRY-STD.WILEY PLUS CARD

Ch. 19.5 - Prob. 9ATSCh. 19.5 - Prob. 10CCCh. 19.5 - Prob. 11CCCh. 19.5 - Prob. 12CCCh. 19.5 - Prob. 13CCCh. 19.6 - Prob. 3LTSCh. 19.6 - Prob. 14PTSCh. 19.6 - Prob. 15PTSCh. 19.6 - Prob. 16ATSCh. 19.6 - Prob. 17CCCh. 19.6 - Prob. 18CCCh. 19.6 - Prob. 20PTSCh. 19.6 - Prob. 21ATSCh. 19.6 - Prob. 22CCCh. 19.7 - Prob. 5LTSCh. 19.7 - Prob. 23PTSCh. 19.7 - Prob. 24ATSCh. 19.7 - Prob. 25CCCh. 19.8 - Prob. 26CCCh. 19.8 - Prob. 27CCCh. 19.9 - Prob. 28CCCh. 19.9 - Prob. 29CCCh. 19.10 - Prob. 30CCCh. 19.10 - Prob. 31CCCh. 19.10 - Prob. 32CCCh. 19.10 - Prob. 33CCCh. 19.10 - Prob. 6LTSCh. 19.10 - Prob. 34PTSCh. 19.10 - Prob. 35PTSCh. 19.10 - Prob. 36ATSCh. 19.10 - Prob. 37ATSCh. 19.10 - Prob. 38CCCh. 19.11 - Prob. 39CCCh. 19.12 - Prob. 7LTSCh. 19.12 - Prob. 40PTSCh. 19.12 - Prob. 41ATSCh. 19.13 - Prob. 42CCCh. 19 - Prob. 43PPCh. 19 - Prob. 44PPCh. 19 - Prob. 45PPCh. 19 - Prob. 46PPCh. 19 - Prob. 47PPCh. 19 - Prob. 48PPCh. 19 - Prob. 49PPCh. 19 - Prob. 50PPCh. 19 - Prob. 51PPCh. 19 - Prob. 52PPCh. 19 - Prob. 53PPCh. 19 - Prob. 54PPCh. 19 - Prob. 55PPCh. 19 - Prob. 56PPCh. 19 - Prob. 57PPCh. 19 - Prob. 58PPCh. 19 - Prob. 59PPCh. 19 - Prob. 60PPCh. 19 - Predict the major product(s) obtained when each of...Ch. 19 - Prob. 62PPCh. 19 - Prob. 63PPCh. 19 - Prob. 64PPCh. 19 - Prob. 65PPCh. 19 - Prob. 66PPCh. 19 - Prob. 67PPCh. 19 - Prob. 68PPCh. 19 - Prob. 69PPCh. 19 - Prob. 70PPCh. 19 - Prob. 71PPCh. 19 - Prob. 72PPCh. 19 - Prob. 73PPCh. 19 - Prob. 74IPCh. 19 - Prob. 75IPCh. 19 - Prob. 76IPCh. 19 - Prob. 77IPCh. 19 - Prob. 78IPCh. 19 - Prob. 79IPCh. 19 - Prob. 80IPCh. 19 - Prob. 81IPCh. 19 - Prob. 83IPCh. 19 - Prob. 84IPCh. 19 - Prob. 85IPCh. 19 - Prob. 86IPCh. 19 - Prob. 87IPCh. 19 - Prob. 88IPCh. 19 - Prob. 89IPCh. 19 - Prob. 90IPCh. 19 - Prob. 91IPCh. 19 - Prob. 92IPCh. 19 - Prob. 93IPCh. 19 - Prob. 94CPCh. 19 - Prob. 95CPCh. 19 - Treatment of the following ketone with LiAIHa...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY