According to the Hardy–Weinberg principle, (a) allele frequencies are not dependent on dominance or recessiveness but remain essentially unchanged from generation to generation (b) the sum of allele frequencies for a given locus is always greater than 1 (c) if a locus has only one allele, thefrequency of that allele is zero (d) allele frequencies change from generation to generation (e) the process of inheritance, by itself, causes changes in allele frequencies
Genetic Variation
Genetic variation refers to the variation in the genome sequences between individual organisms of a species. Individual differences or population differences can both be referred to as genetic variations. It is primarily caused by mutation, but other factors such as genetic drift and sexual reproduction also play a major role.
Quantitative Genetics
Quantitative genetics is the part of genetics that deals with the continuous trait, where the expression of various genes influences the phenotypes. Thus genes are expressed together to produce a trait with continuous variability. This is unlike the classical traits or qualitative traits, where each trait is controlled by the expression of a single or very few genes to produce a discontinuous variation.
According to the Hardy–Weinberg principle, (a) allele frequencies are not dependent on dominance or recessiveness but remain essentially unchanged from generation to generation (b) the sum of allele frequencies for a given locus is always greater than 1 (c) if a locus has only one allele, the
frequency of that allele is zero (d) allele frequencies change from generation to generation (e) the process of inheritance, by itself, causes changes in allele frequencies
Trending now
This is a popular solution!
Step by step
Solved in 3 steps