Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 70AP
(a)
To determine
To explain: The angular speed of the copper disk is change or not as the disk cools down.
(b)
To determine
The angular speed of the copper disk at lowest temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Following a collision in outer space, a copper disk at 850°C is rotating about its axis with an angular speed of 25.0 rad/s. As the disk radiates infrared light, its temperature falls to 20.0°C. No external torque acts on the disk. (a) Does the angular speed change as the disk cools? Explain how it changes or why it does not. (b) What is its angular speed at the lower temperature?
Following a collision between a large spacecraft and an asteroid, a copper disk of radius 28.0 m and thickness 1.20 m at a temperature of 850°C is floating in space, rotating about its symmetry axis with an angular speed of25.0 rad/s. As the disk radiates infrared light, its temperature falls to 20.0°C. No external torque acts on the disk. (a) Find the change in kinetic energy of the disk. (b) Find the change in internal energy of the disk. (c) Find theamount of energy it radiates.
Following a collision between a large spacecraft and an asteroid, a copper disk of radius 28.0 m and thickness 1.20 m, at a temperature of 850°C, is floating in space, rotating about its axis with an angular speed of 23.5 rad/s. As the disk radiates infrared light, its temperature falls to 20.0°C. No external torque acts on the disk.
(a) Find the change in kinetic energy of the disk.
24.17747
(b) Find the change in internal energy of the disk.
(c) Find the amount of energy it radiates.
Chapter 19 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 19.1 - Prob. 19.1QQCh. 19.3 - Consider the following pairs of materials. Which...Ch. 19.4 - If you are asked to make a very sensitive glass...Ch. 19.4 - Prob. 19.4QQCh. 19.5 - A common material for cushioning objects in...Ch. 19.5 - On a winter day, you turn on your furnace and the...Ch. 19 - Prob. 1OQCh. 19 - Prob. 2OQCh. 19 - Prob. 3OQCh. 19 - Prob. 4OQ
Ch. 19 - Prob. 5OQCh. 19 - Prob. 6OQCh. 19 - Prob. 7OQCh. 19 - Prob. 8OQCh. 19 - Prob. 9OQCh. 19 - Prob. 10OQCh. 19 - Prob. 11OQCh. 19 - Prob. 12OQCh. 19 - Prob. 13OQCh. 19 - Prob. 14OQCh. 19 - Prob. 1CQCh. 19 - Prob. 2CQCh. 19 - Prob. 3CQCh. 19 - Prob. 4CQCh. 19 - Prob. 5CQCh. 19 - Metal lids on glass jars can often be loosened by...Ch. 19 - Prob. 7CQCh. 19 - Prob. 8CQCh. 19 - Prob. 9CQCh. 19 - Prob. 10CQCh. 19 - Prob. 1PCh. 19 - Prob. 2PCh. 19 - Prob. 3PCh. 19 - Prob. 4PCh. 19 - Liquid nitrogen has a boiling point of 195.81C at...Ch. 19 - Prob. 6PCh. 19 - Prob. 7PCh. 19 - Prob. 8PCh. 19 - Prob. 9PCh. 19 - Prob. 10PCh. 19 - A copper telephone wire has essentially no sag...Ch. 19 - Prob. 12PCh. 19 - The Trans-Alaska pipeline is 1 300 km long,...Ch. 19 - Prob. 14PCh. 19 - Prob. 15PCh. 19 - Prob. 16PCh. 19 - Prob. 17PCh. 19 - Why is the following situation impossible? A thin...Ch. 19 - A volumetric flask made of Pyrex is calibrated at...Ch. 19 - Review. On a day that the temperature is 20.0C, a...Ch. 19 - Prob. 21PCh. 19 - Prob. 22PCh. 19 - Prob. 23PCh. 19 - Prob. 24PCh. 19 - Prob. 25PCh. 19 - Prob. 26PCh. 19 - Prob. 27PCh. 19 - Prob. 28PCh. 19 - Prob. 29PCh. 19 - Prob. 30PCh. 19 - An auditorium has dimensions 10.0 m 20.0 m 30.0...Ch. 19 - Prob. 32PCh. 19 - Prob. 33PCh. 19 - Prob. 34PCh. 19 - Prob. 35PCh. 19 - In state-of-the-art vacuum systems, pressures as...Ch. 19 - Prob. 37PCh. 19 - Prob. 38PCh. 19 - Prob. 39PCh. 19 - Prob. 40PCh. 19 - Prob. 41PCh. 19 - Prob. 42PCh. 19 - Prob. 43PCh. 19 - The pressure gauge on a cylinder of gas registers...Ch. 19 - Prob. 45APCh. 19 - Prob. 46APCh. 19 - Prob. 47APCh. 19 - Prob. 48APCh. 19 - Prob. 49APCh. 19 - Why is the following situation impossible? An...Ch. 19 - Prob. 51APCh. 19 - Prob. 52APCh. 19 - Prob. 53APCh. 19 - Prob. 54APCh. 19 - A student measures the length of a brass rod with...Ch. 19 - Prob. 56APCh. 19 - A liquid has a density . (a) Show that the...Ch. 19 - Prob. 59APCh. 19 - Prob. 60APCh. 19 - The rectangular plate shown in Figure P19.61 has...Ch. 19 - Prob. 62APCh. 19 - Prob. 63APCh. 19 - Prob. 64APCh. 19 - Prob. 65APCh. 19 - Prob. 66APCh. 19 - Prob. 67APCh. 19 - Prob. 68APCh. 19 - Prob. 69APCh. 19 - Prob. 70APCh. 19 - Prob. 71APCh. 19 - Prob. 72CPCh. 19 - Prob. 73CPCh. 19 - Prob. 74CPCh. 19 - Prob. 75CPCh. 19 - Prob. 76CPCh. 19 - Prob. 77CPCh. 19 - Prob. 78CPCh. 19 - A 1.00-km steel railroad rail is fastened securely...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A spherical shell has inner radius 3.00 cm and outer radius 7.00 cm. It is made of material with thermal conductivity k = 0.800 W/m C. The interior is maintained at temperature 5C and the exterior at 40C. After an interval of time, the shell reaches a steady state with the temperature at each point within it remaining constant in time. (a) Explain why the rate of energy transfer P must be the same through each spherical surface, of radius r, within the shell and must satisfy dTdr=P4kr2 (b) Next, prove that 5dT=P4k0.030.07r2dr where T is in degrees Celsius and r is in meters. (c) Find the rate of energy transfer through the shell. (d) Prove that 5TdT=1.840.03rr2dr where T is in degrees Celsius and r is in meters. (e) Find the temperature within the shell as a function of radius. (f) Find the temperature at r = 5.00 cm, halfway through the shell.arrow_forwardHow many moles are there in (a) 0.0500 g of N2 gas (M = 28.0 g/mol)? (b) 10.0 g of CO2 gas (M = 44.0 g/mol)? (c) How many molecules are present in each case?arrow_forwardA 28.4-kg solid aluminum cylindrical wheel of radius 0.41 m is rotating about its axel in frictionless bearings with an angular velocity of ω = 32.8 rad/s. If its temperature is then raised from 20.0◦C to 95.0◦C, what is the fractional change in ω?arrow_forward
- Metal A is in thermal contact with another Metal B. The two metals have the same length and area. If the end of Metal A is held constant at 80°C and the opposite end (which is Metal B) is held at 300°C. What will be the temperature, in °C, at the junction? (Ka = 314 W/m K and Kb = 427 W/m K)arrow_forwardConsider an object with any one of the shapes displayed in Table 8.1. What is the percentage increase in the moment of inertia of the object when it is warmed from 0°C to 100°C if it is composed of (a) copper or (b) aluminum? Assume the average linear expansion coefficients shown in Table 10.1 do not vary between 0°C and 100°C. (c) Why are the answers for parts (a) and (b) the same for all the shapes?arrow_forwardIn an electrically heated home, the temperature of the ground in contact with a concrete basement wall is 10.3 oC. The temperature at the inside surface of the wall is 18.1 oC. The wall is 0.14 m thick and has an area of 6.5 m2. Assume that one kilowatt hour of electrical energy costs $0.10. How many hours are required for one dollar's worth of energy to be conducted through the wall?arrow_forward
- You are using a thin layer of epoxy to bond a Silicon chip to a pure aluminum plate that acts as a heat sink (epoxy layer 0.0200mm). The Silicon chip (k = 149.0 W/(m-K) is 0.200 mm thick, and has dimensions of 25.0mm by 25.0mm. The pure aluminum plate is 0.850cm thick, and has the same dimensions as the Silicon chip. The hot side of the silicon chip is measured to be 62.0°C; the cold side of the pure aluminum plate is measured to be 31.0°C. Assuming steady-state conduction (with the thin layer of epoxy acting as contact resistance, see Table 3.2.) determine the heat transfer rate through the chip. Do not add in an addition resistance due to the thickness of the epoxy layer, this has been incorporated into the contact resistance.arrow_forwardQuestion 11 After some time, you pour 0.5 kg of milk, whose initial temperature was 5°C. What will be the final equilibrium temperature of this system? Let: 1.5 kg of coffee, originally at 90°C, is placed into a .3 kg aluminum cup. J Ccoffee = 4186 kg K J CAI = 500 kg K J CMilk = 3000 kg K Question 12 A solid steel sphere of radius 50 acts as a perfect radiator, calculate the amount of heat it will radiate after 1 min. cm is heated to 3000 K. If the spherearrow_forwardThe temperature near the surface of the earth is 302 K. A xenon atom (atomic mass = 131.29 u) has a kinetic energy equal to the average translational kinetic energy and is moving straight up. If the atom does not collide with any other atoms or molecules, then how high up would it go before coming to rest? Assume that the acceleration due to gravity is constant during the ascent.arrow_forward
- The air temperature above coastal areas is profoundly influenced by the large specific heat of water. One reason is that the energy released when 1 cubic meter of water cools by 1.0°C will raise the temperature of an enormously larger volume of air by 1.0°C. Estimate that volume of air. The specific heat of air is approximately 1.0 kJ/kg ? °C. Take the density of air to be 1.3 kg/m3.arrow_forwardLiquid helium is stored at its boiling-point temperature of 4.2 K in a spherical container (r= 0.30 m). The container is a perfect blackbody radiator. The container is surrounded by a spherical shield whose temperature is 89 K. A vacuum exists in the space between the container and the shield. The latent heat of vaporization for helium is 2.1 x 104 J/kg. What mass of liquid helium boils away through a venting valve in one hour? i 0.34 kgarrow_forwardLiquid helium is stored at its boiling-point temperature of 4.2 K in a spherical container (r= 0.30 m). The container is a perfect blackbody radiator. The container is surrounded by a spherical shield whose temperature is 89 K. A vacuum exists in the space between the container and the shield. The latent heat of vaporization for helium is 2.1 x 104 J/kg. What mass of liquid helium boils away through a venting valve in one hour? m = iarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Thermal Expansion and Contraction of Solids, Liquids and Gases; Author: Knowledge Platform;https://www.youtube.com/watch?v=9UtfegG4DU8;License: Standard YouTube License, CC-BY