Numerical Methods for Engineers
Numerical Methods for Engineers
7th Edition
ISBN: 9780073397924
Author: Steven C. Chapra Dr., Raymond P. Canale
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 19, Problem 6P

Construct amplitude and phase line spectra for Prob. 19.4.

Expert Solution & Answer
Check Mark
To determine

To graph: The amplitude and phase line spectra for the sawtooth wave as shown in the following figure,

Numerical Methods for Engineers, Chapter 19, Problem 6P , additional homework tip  1

Explanation of Solution

Given Information: The sawtooth wave given in the following figure,

Numerical Methods for Engineers, Chapter 19, Problem 6P , additional homework tip  2

Formula used:

Consider f(t) is a periodic function with period T defined in the interval 0xT

then the Fourier series expansion of the function,

f(t)=a0+k=1[akcos(kω0t)+bksin(kω0t)] with ω0=2πT.

And the coefficients are defined by,

a0=1T0Tf(t)dt;ak=2T0Tf(t)cos(kω0t)dt;bk=2T0Tf(t)sin(kω0t)dt

Alternatively, the Fourier series can also be written as, f(t)=a0+k=1[ckcos(kω0tϕk)]

Here, the amplitude ck and phase ϕk for each term is defined as,

ck2=ak2+bk2,ϕk=tan1(bkak)

Plot ck and ϕk in the frequency domain to plot the amplitude and phase line spectra.

Graph:

Consider the sawtooth wave given in the following figure,

Numerical Methods for Engineers, Chapter 19, Problem 6P , additional homework tip  3

Therefore, the sawtooth wave is a periodic function f(t) with period T in the interval 0tT and from the graph,

f(t) is a straight line joining the points (0,0) and (T2,1) in 0tT2.

f(t) is a straight line joining the points (T2,1) and (T,0) in T2tT.

Therefore, the sawtooth wave,

f(t)={2Tt0tT222TtT2tT

Therefore, the Fourier series expansion of this function is,

f(t)=a0+k=1[akcos(kω0t)+bksin(kω0t)];ω0=2πT

In the above expression, the coefficients are defined by,

Now, find ak.

ak=2T0Tf(t)cos(2kπTt)dt=2T0T2(2Tt)cos(2kπTt)dt+2TT2T(22Tt)cos(2kπTt)dt=4T20T2tcos(2kπTt)dt+4TT2Tcos(2kπTt)dt4T2T2Ttcos(2kπTt)dt

Consider,

I=tcos(2kπTt)dt=tcos(2kπTt)dt{ddt(t)cos(2kπTt)dt}dt=tT2kπsin(2kπTt)T2kπsin(2kπTt)dt=Tt2kπsin(2kπTt)+T24k2π2cos(2kπTt)

Hence,

0T2tcos(2kπTt)dt=[Tt2kπsin(2kπTt)+T24k2π2cos(2kπTt)]0T2=T2kπT2sin(2kπTT2)+T24k2π2cos(2kπTT2)T24k2π2cos(0)=T24kπsin(kπ)+T24k2π2cos(kπ)T24k2π2=T24k2π2(1)kT24k2π2

Further,

T2Tcos(2kπTt)dt=T2kπsin(2kπTt)|T2T=T2kπ{sin(2kπ)sin(kπ)}=0

T2Ttcos(2kπTt)dt=[Tt2kπsin(2kπTt)+T24k2π2cos(2kπTt)]T2T=T22kπsin(2kπ)+T24k2π2cos(2kπ)T24kπsin(kπ)T24k2π2cos(kπ)=T24k2π2T24k2π2(1)k

Therefore,

ak=4T2[T24k2π2(1)kT24k2π2]+4T×04T2[T24k2π2T24k2π2(1)k]=1k2π2(1)k+1k2π21k2π2+1k2π2(1)k=0

Now, find bk.

bk=2T0Tf(t)sin(2kπTt)dt=2T0T2(2Tt)sin(2kπTt)dt+2TT2T(22Tt)sin(2kπTt)dt=4T20T2tsin(2kπTt)dt+4TT2Tsin(2kπTt)dt4T2T2Ttsin(2kπTt)dt

Consider,

I=tsin(2kπTt)dt=tsin(2kπTt)dt{ddt(t)sin(2kπTt)dt}dt=tT2kπcos(2kπTt)+T2kπcos(2kπTt)dt=Tt2kπcos(2kπTt)+T24k2π2sin(2kπTt)

Hence,

0T2tsin(2kπTt)dt=[Tt2kπcos(2kπTt)+T24k2π2sin(2kπTt)]0T2=T24kπcos(kπ)+T24k2π2sin(kπ)=T24kπ(1)k

T2Tsin(2kπTt)dt=T2kπcos(2kπTt)|T2T=T2kπcos(2kπ)+T2kπcos(kπ)=T2kπ+T2kπ(1)k

Further,

T2Ttsin(2kπTt)dt=[Tt2kπcos(2kπTt)+T24k2π2sin(2kπTt)]T2T=T22kπcos(2kπ)+T24k2π2sin(2kπ)+T24kπcos(kπ)T24k2π2sin(kπ)=T22kπ+T24kπ(1)k

Thus,

bk=4T2[T24kπ(1)k]+4T[T2kπ+T2kπ(1)k]4T2[T22kπ+T24kπ(1)k]=1kπ(1)k2kπ+2kπ(1)k+2kπ1kπ(1)k=2kπ(1)k

Hence, the coefficients of the Fourier series expansions are,

a0=0,ak=0,bk=2kπ(1)k

That is,

bk={2kπ>0k even2kπ<0k odd

Consider,

ck=ak2+bk2=0+4k2π2(1)2k=4k2π2=2kπ

Thus, the amplitude of the kth term is 2kπ, that is, the amplitudes for k=1,2,3,4,5,... are,

2π,1π,23π,12π,25π,...

Furthermore, consider,

ϕk=tan1(bkak)

As ak=0 and bk>0 for even k thus,

ϕk=π2

As ak=0 and bk<0 for odd k thus,

ϕk=π2

Therefore,

ϕk={π2k evenπ2k odd

Thus, the phases corresponding to k=1,2,3,4,5,... are π2,π2,π2,π2,π2,...

Use the following MATLAB code to construct the amplitude plot.

function Code_97924_19_6P_a()

for k = 1: 8

f(k) = k;

% define the amplitude

A(k) = 2/(k*pi);

end

% plot the values thus obtained

stem(f,A,'filled','LineWidth',4,'Color','k','Marker', 'none');

% define geometric properties

set(gca,'XTickLabel',{' ' 'f_0' 'f_1' 'f_2' 'f_3' 'f_4' 'f_5' 'f_6' 'f_7'});

set(gca,'YTick',[A(8) A(4) A(2) A(1)]);

set(gca,'YTickLabel',{'1/4\pi' '1/2\pi' '1/\pi' '2/\pi'});

set(gca,'Fontname','Times New Roman','FontSize',12);

xlim([0, 9]); grid on

end

Execute the above code to obtain the amplitude plot as,

Numerical Methods for Engineers, Chapter 19, Problem 6P , additional homework tip  4

Interpretation: The above plot shows the amplitude plot for the sawtooth wave as shown in the figure provided.

Use the following MATLAB file can be used to construct the phase plot.

function Code_97924_19_6P_b()

for k = 1: 8

f(k) = k;

% define the phase

P(k) = (-1)^k*(pi/2);

end

% plot the values thus obtained

stem(f,P,'filled','LineWidth',4,'Color','k','Marker', 'none');

% define geometric properties

set(gca,'XTickLabel',{' ' 'f_0' 'f_1' 'f_2' 'f_3' 'f_4' 'f_5' 'f_6' 'f_7'});

set(gca,'YTick',[-pi -pi/2 0 pi/2 pi]);

set(gca,'YTickLabel',{'-\pi' '-\pi/2' '0' '\pi/2' '\pi'});

set(gca,'Fontname','Times New Roman','FontSize',12);

xlim([0, 9]); grid on

ylim([-pi-0.1, pi+0.1]); grid on

end

Execute the above code to obtain the plot as,

Numerical Methods for Engineers, Chapter 19, Problem 6P , additional homework tip  5

Interpretation: The above plot shows the phase line spectra for the sawtooth wave as shown in the figure provided.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2. A landlord is about to write a rental contract for a tenant which lasts T months. The landlord first decides the length T > 0 (need not be an integer) of the contract, the tenant then signs it and pays an initial handling fee of £100 before moving in. The landlord collects the total amount of rent erT at the end of the contract at a continuously compounded rate r> 0, but the contract stipulates that the tenant may leave before T, in which case the landlord only collects the total rent up until the tenant's departure time 7. Assume that 7 is exponentially distributed with rate > 0, λ‡r. (i) Calculate the expected total payment EW the landlord will receive in terms of T. (ii) Assume that the landlord has logarithmic utility U(w) = log(w - 100) and decides that the rental rate r should depend on the contract length T by r(T) = λ √T 1 For each given λ, what T (as a function of X) should the landlord choose so as to maximise their expected utility? Justify your answer. Hint. It might be…
Please ensure that all parts of the question are answered thoroughly and clearly. Include a diagram to help explain answers. Make sure the explanation is easy to follow. Would appreciate work done written on paper. Thank you.
Consider the proof below: Proposition: If m is an even integer, then 5m +4 is an even integer. Proof: We see that |5m+4=10n+4 = 2(5n+2). Therefore, 5m+4 is an even integer. **Note: you may assume the proof is valid, just poorly written. Based upon the Section 1.3 screencast and the reading assignment, select all writing guidelines that are missing in the proof. Proof begins by stating assumptions ✓ Proof has an invitational tone/uses collective pronouns Proof is written in complete sentences Each step is justified ☐ Proof has a clear conclusion
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY