Equations 18.10 and 19.3 to calculate the emf values of the Daniell cell at
Interpretation:
The EMFvalues of the cell at the temperatures of
Concept introduction:
Entropy
Enthalpy
Answer to Problem 68AP
Solution: The EMFof the cell at a temperature of
The EMFof the cell at a temperature of
Explanation of Solution
The standard free energy change as follows:
Here,
Substitute the value of
Here,
The considered reaction is:
The change in the enthalpy of the reaction is as follows:
Here,
The standard enthalpies of the formation of
Substitute the values in the above equation:
Thus, the standard enthalpy of formation is
The change in the entropy of the reaction is as follows:
Here,
The standard entropies of the formation of
Substitute the values in the above equation:
Thus, the standard entropy of formation is
Substitute the values of the standard entropy of formation and the standard enthalpy of formation in equation
At a temperature of
Therefore, the EMFof the cell ata temperature of
Ata temperature of
Substitute the value of the standard entropy of formation and the standard enthalpy of formation in equation
Therefore, the EMFof the cell ata temperature of
In this calculation, the value of theEMFof the cell does not depend on the temperature, but, in practice, the value of theEMFof the cell does decrease with temperature. This is because the assumption used in the derivation is that
The EMF valuesof the cell at the temperatures of
Want to see more full solutions like this?
Chapter 19 Solutions
Chemistry
- Consider a galvanic cell for which the anode reaction is 3 Pb(s)Pb2+(1.0102M)+2e and the cathode reaction is VO2+(0.10M)+2H3O+(0.10M)+eV3+(1.0105M)+3H2O(l) The measured cell potential is 0.640 V. Calculate E for the VO2+V3+ half-reaction, usingE(Pb2+Pb) from Appendix E. Calculate the equilibrium constant (K) at 25°C for thereaction Pb(s)+2VO2+(aq)+4H3O+(aq)Pb2+(aq)+2V3+(aq)+6H2O(l)arrow_forwardA galvanic cell is constructed in which the overall reactionis Cr2O72(aq)+14H2O+(aq)+6I(aq)2Cr3+(aq)+3I2(s)+21H2O(l) Calculate E for this cell. At pH 0, with [Cr2O72]=1.5M and [I]=0.40M, the cell potential is found to equal 0.87 V. Calculatethe concentration of Cr3+(aq) in the cell.arrow_forwardElectrochemical Cells II Consider this cell running under standard conditions: Ni(s)Ni2(aq)Cu+(aq)Cu(s) a Is this cell a voltaic or an electrolytic cell? How do you know? b Does current flow in this cell spontaneously? c What is the maximum cell potential for this cell? d Say the cell is connected to a voltmeter. Describe what you might see for an initial voltage and what voltage changes, if any, you would observe as time went by. e What is the free energy of this cell when it is first constructed? f Does the free energy of the cell change over time as the cell runs? If so, how does it change?arrow_forward
- a Calculate G for the following cell reaction: Tl(s)Tl+(aq)Pb2+(aq)Pb(s) The Gf for Tl+(aq) is 32.4 kJ/mol. b From G, calculate the standard cell potential for the cell reaction and from this, determine the standard potential for Tl2+(aq)+eTl(s).arrow_forwardDetermine the overall reaction and its standard cell potential at 25 C for this reaction. Is the reaction spontaneous at standard conditions? Cu(s)|Cu2+(aq)Au3+(aq)|Au(s)arrow_forwardThe mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forward
- Consider the following galvanic cell at 25C: Pt|Cr2+(0.30M),Cr3+(2.0M)||Co2+(0.20M)|Co The overall reaction and equilibrium constant value are 2Cr2+(aq)+Co2+(aq)2Cr3+(aq)+Co(s)K=2.79107 Calculate the cell potential, for this galvanic cell and G for the cell reaction at these conditions.arrow_forwardIs it reasonable to conclude that a potential could be assigned to each half-cell in a voltaic cell, based on these data for three voltaic cells? Explain. Zn(s)|Zn2+(aq)||Cu2+(aq)|Cu(s) cell potential=1.10 V Zn(s)|Zn2+(aq)||Ag+(aq)|Ag(s) cell potential=1.56 V Cu(s)|Cu2+(aq)||Ag+(aq)|Ag(s) cell potential=0.46 Varrow_forwardUse the data from the table of standard reduction potentials in Appendix H to calculate the standard potential of the cell based on each of the following reactions. In each case, state whether the reaction proceeds spontaneously as written or spontaneously in the reverse direction under standard-state conditions. (a) H2(g)+Cl2(g)2H+(aq)+2Cl(aq) (b) Al3+(aq)+3Cr2+(aq)Al(s)+3Cr3+(aq) (c) Fe2+(aq)+Ag+(aq)Fe3+(aq)+Ag(s)arrow_forward
- Determine the overall reaction and its standard cell potential at 25 C for the reaction involving the galvanic cell made from a half-cell consisting of a silver electrode in 1 M silver nitrate solution and a half-cell consisting of a zinc electrode in 1 M zinc nitrate. Is the reaction spontaneous at standard conditions?arrow_forwardFor each of the reactions, calculate E from the table of standard potentials, and state whether the reaction is spontaneous as written or spontaneous in the reverse direction under standard conditions. (a) Cu2+(aq)+Ni(s)Cu(s)+Ni2+(aq) (b) 2Ag(s)+Cl2(g)2AgCl(s) (c) Cl2(g)+2I(aq)2Cl(aq)+I2(s)arrow_forwardA potassium chloride solution is electrolyzed by passing a current through the solution using inert electrodes. A gas evolves at each electrode, and there is a large increase in pH of the solution. Write the half-reactions that occur at the anode and at the cathode.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning