EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
1st Edition
ISBN: 9780100546714
Author: Katz
Publisher: YUZU
bartleby

Concept explainers

Question
Book Icon
Chapter 19, Problem 62PQ

(a)

To determine

The density of gasoline on a very hot day (T=95°F).

(a)

Expert Solution
Check Mark

Answer to Problem 62PQ

The density of gasoline on a very hot day (T=95°F) is 723.88kg/m3.

Explanation of Solution

Write the expression for the decreasing density of gasoline.

  ρ0=mV0                                                                                                            (I)

Here, ρ0 is the decreasing density of the gasoline, m is the mass of the gasoline, and V0 is the increasing volume of the gas.

Rearrange the equation (I) for m.

  m=ρ0V0                                                                                                          (II)

Write the expression for the expansion of volume (Refer Equation 19.5).

  ΔVβV0ΔT                                                                                                   (III)

Here, ΔV is the change in volume, V0 is the initial volume, β is the coefficient of volume expansion, and ΔT is the change in temperature.

Write the expression for the original density of gasoline.

  ρ=mV                                                                                                             (IV)

Here, ρ is the density of the gasoline, m is the mass of the gasoline, and V is the change in volume of the gasoline container.

Conclusion:

Substitute equation (II) in the equation (IV) and replace V0+ΔV for V.

  ρ=ρ0V0V=ρ0V0V0+ΔV=ρ01+(ΔVV0)

Substitute equation (III) in above equation.

  ρ=ρ01+(βV0ΔTV0)=ρ01+β(TfTi)                                                                                              (V)

Here, Ti is the initial temperature and Tf is the final temperature.

Convert initial temperature of the gas into degree Celsius.

  Ti=(60°F32)59=15.6°C

Convert final temperature of the gas into degree Celsius.

  Tf=(95°F32)59=35°C

Substitute 950×106°C1 for β (Refer Table 19.2), 737.22kg/m3 for ρ0, 15.6°C for Ti, and 35°C for Tf in equation (V) to find ρ.

  ρ=(737.22kg/m3)[1+(950×106°C1)(35°C15.6°C)]=723.88kg/m3

Therefore, the density of gasoline on a very hot day (T=95°F) is 723.88kg/m3.

(b)

To determine

The mass of the gasoline purchased at a temperature of 60°F.

(b)

Expert Solution
Check Mark

Answer to Problem 62PQ

The mass of the gasoline purchased at a temperature of 60°F is 33.5kg.

Explanation of Solution

Rearrange the equation (IV) from part (a) for m.

  m=ρV                                                                                                      (VI)

Conclusion:

Substitute 737.22kg/m3 for ρ (at 60°F) and 12.0gal for V in equation (VI) to find m.

      m=(737.22kg/m3)(12.0gal)(0.003785m31gal)=33.5kg

Therefore, the mass of the gasoline purchased at a temperature of 60°F is 33.5kg.

(c)

To determine

The mass of the gasoline purchased at a temperature of 95°F.

(c)

Expert Solution
Check Mark

Answer to Problem 62PQ

The mass of the gasoline purchased at a temperature of 95°F is 32.9kg.

Explanation of Solution

Rearrange the equation (IV) from part (a) for m.

  m=ρV

Conclusion:

Substitute 723.88kg/m3 for ρ (at 95°F) and 12.0gal for V in above equation to find m.

      m=(723.88kg/m3)(12.0gal)(0.003785m31gal)=32.9kg

Therefore, the mass of the gasoline purchased at a temperature of 95°F is 32.9kg.

(d)

To determine

The amount of money did a consumer lose by buying gasoline on a very hot day.

(d)

Expert Solution
Check Mark

Answer to Problem 62PQ

The amount of money did a consumer lose by buying gasoline on a very hot day is 54cents.

Explanation of Solution

Since the consumer spent $30 for the 12 gallons of fuel, but on the hot day received 0.6 kg less compared to the 33.5 kg expected or 1.8% less.

Conclusion:

Hence, they lost about 1.8% of the $30 gas bill about 54cents.

Therefore, the amount of money did a consumer lose by buying gasoline on a very hot day is 54cents.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וח
No chatgpt pls will upvote
No chatgpt pls will upvote

Chapter 19 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 19 - Prob. 4PQCh. 19 - Prob. 5PQCh. 19 - Prob. 6PQCh. 19 - Prob. 7PQCh. 19 - Prob. 8PQCh. 19 - Object A is placed in thermal contact with a very...Ch. 19 - Prob. 10PQCh. 19 - Prob. 11PQCh. 19 - Prob. 12PQCh. 19 - Prob. 13PQCh. 19 - The tallest building in Chicago is the Willis...Ch. 19 - Prob. 15PQCh. 19 - Prob. 16PQCh. 19 - At 22.0C, the radius of a solid aluminum sphere is...Ch. 19 - Prob. 18PQCh. 19 - Prob. 19PQCh. 19 - Prob. 20PQCh. 19 - The distance between telephone poles is 30.50 m in...Ch. 19 - Prob. 22PQCh. 19 - Prob. 23PQCh. 19 - Prob. 24PQCh. 19 - Prob. 25PQCh. 19 - Prob. 26PQCh. 19 - Prob. 27PQCh. 19 - Prob. 28PQCh. 19 - Prob. 29PQCh. 19 - Prob. 30PQCh. 19 - Prob. 31PQCh. 19 - Prob. 32PQCh. 19 - Prob. 33PQCh. 19 - Prob. 34PQCh. 19 - Prob. 35PQCh. 19 - Prob. 36PQCh. 19 - Prob. 37PQCh. 19 - Prob. 38PQCh. 19 - Prob. 39PQCh. 19 - On a hot summer day, the density of air at...Ch. 19 - Prob. 41PQCh. 19 - Prob. 42PQCh. 19 - Prob. 43PQCh. 19 - Prob. 44PQCh. 19 - Prob. 45PQCh. 19 - Prob. 46PQCh. 19 - Prob. 47PQCh. 19 - A triple-point cell such as the one shown in...Ch. 19 - An ideal gas is trapped inside a tube of uniform...Ch. 19 - Prob. 50PQCh. 19 - Prob. 51PQCh. 19 - Case Study When a constant-volume thermometer is...Ch. 19 - An air bubble starts rising from the bottom of a...Ch. 19 - Prob. 54PQCh. 19 - Prob. 55PQCh. 19 - Prob. 56PQCh. 19 - Prob. 57PQCh. 19 - Prob. 58PQCh. 19 - Prob. 59PQCh. 19 - Prob. 60PQCh. 19 - Prob. 61PQCh. 19 - Prob. 62PQCh. 19 - Prob. 63PQCh. 19 - Prob. 64PQCh. 19 - Prob. 65PQCh. 19 - Prob. 66PQCh. 19 - Prob. 67PQCh. 19 - Prob. 68PQCh. 19 - Prob. 69PQCh. 19 - Prob. 70PQCh. 19 - Prob. 71PQCh. 19 - A steel plate has a circular hole drilled in its...Ch. 19 - Prob. 73PQCh. 19 - A gas is in a container of volume V0 at pressure...Ch. 19 - Prob. 75PQCh. 19 - Prob. 76PQCh. 19 - Prob. 77PQCh. 19 - Prob. 78PQCh. 19 - Prob. 79PQCh. 19 - Prob. 80PQCh. 19 - Two glass bulbs of volumes 500 cm3 and 200 cm3 are...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning