Concept explainers
A converging lens with a focal length of 40 cm and a diverging lens with a focal length of –40 cm are 160 cm apart. A 2.0-cm-tall object is 60 cm in front of the converging lens.
a. Use ray tracing to find the position and height of the image. To do this, accurately use a ruler or paper with a grid. Determine the image distance and image height by making measurements on your diagram.
b. Calculate the image height and image position relative to the second lens. Compare with your ray-tracing answers in part a.
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
College Physics: A Strategic Approach (4th Edition)
Additional Science Textbook Solutions
Introduction to Electrodynamics
University Physics Volume 1
Essential University Physics (3rd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Tutorials in Introductory Physics
Sears And Zemansky's University Physics With Modern Physics
- A doctor examines a mole with a 15.0-cm focal length magnifying glass held 13.5 cm from the mole. (a) Where is the image? (b) What is its magnification? (c) How big is the image of a 5.00 mm diameter mole?arrow_forwardAn object 1.50 cm high is held 3.00 cm from a person’s cornea, and its reflected image is measured to be 0.167 cm high. (a) What is the magnification? (b) Where is the image? (c) Find the radius of curvature of the convex mirror formed by the cornea. (Note that this technique is used by optometrists to measure the curvature of the cornea for contact lens fitting. The instrument used is called a keratometer, or curve measurer.)arrow_forwardPeople who do very detailed work close up, such as jewelers, often can see objects clearly at much closer distance than the normal 25 cm. (a) What is the power of the eyes of a woman who can see an object clearly at a distance of only 8.00 cm? (b) What is the image size of a 1.00-mm object, such as lettering inside a ring, held at this distance? (c) What would the size of the image be if the object were held at the normal 25.0 cm distance?arrow_forward
- A small telescope has a concave mirror with a 2.00-rn radius of curvature for its objective. Its eyepiece is a 4.00 cm-focal length lens. (a) What is the telescope’s angular magnification? (b) What angle is subtended by a 25,000 km-diameter sunspot? (c) What is the angle of its telescopic image?arrow_forwardSuppose you want to use a converging lens to project the image of two trees onto a screen. As show n in Figure CQ36.9, one tree is a distance x from the lens and the other is at 2x. You adjust the screen so that the near tree is in locus. It you now want the far tree to be in focus, do you move the screen toward or away from the lens?arrow_forwardAn amoeba is 0.305 cm away from the 0.300 cm- focal length objective lens of a microscope. (a) Where is the image formed by the objective lens? (b) What is this image’s magnification? (C) An eyepiece with a 2.00-cm focal length is placed 20.0 cm from the objective. Where is the final image? (d) What angular magnification is produced by the eyepiece? (e) What is the overall magnification? (See Figure 2.39.)arrow_forward
- What are the differences between real and virtual images? How can you tell (by looking) whether an image formed by a single lens or mirror is real or virtual?arrow_forwardA near-sighted person has afar point of 80 cm. (a) What kind of corrective lens the person will need if the lens is to be placed 1.5 cm from the eye? (b) What would be the power of the contact lens needed? Assume distance to contact lens from the eye to be zero.arrow_forwardAn object is placed a distance of 10.0 cm to the left of a thin converging lens of focal length f = 8.00 cm, and a concave spherical mirror with radius of curvature +18.0 cm is placed a distance of 45.0 cm to the right of the lens (Fig. P38.129). a. What is the location of the final image formed by the lensmirror combination as seen by an observer positioned to the left of the object? b. What is the magnification of the final image as seen by an observer positioned to the left of the object? c. Is the final image formed by the lensmirror combination upright or inverted? FIGURE P38.129arrow_forward
- Two converging lenses having focal lengths of f1 = 10.0 cm and f2 = 20.0 cm are placed a distance d = 50.0 cm apart as shown in Figure P35.48. The image due to light passing through both lenses is to be located between the lenses at the position x = 31.0 cm indicated. (a) At what value of p should the object be positioned to the left of the first lens? (b) What is the magnification of the final image? (c) Is the final image upright or inverted? (d) Is the final image real or virtual?arrow_forward(a) What magnification is produced by a 0.150 cm-focal length microscope objective that is 0.155 cm from the object being viewed? (b) What is the overall magnification if an 8 x eyepiece (one that produces an angular magnification of 8.00) is used?arrow_forwardAn individual is nearsighted; his near point is 18.0 cm and his far point is 50.0 cm. (a) What lens power is needed to correct his nearsightedness? (b) When the lenses are in use, what is this persons near point?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning