(a)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept introduction:
Elimination Reaction: It is just reverse reaction of addition where substituent from the given molecule is removed via E1 (the reaction depends only on the substrate involved in the reaction) or E2 (the reaction depends on both of the substituents in the reaction) mechanism.
Grignard Reaction: This is a organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl, H2SO4 etc.,).
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of
To identify: The reagents used to accomplish the given transformation
(b)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept introduction:
Elimination Reaction: It is just reverse reaction of addition where substituent from the given molecule is removed via E1 (the reaction depends only on the substrate involved in the reaction) or E2 (the reaction depends on both of the substituents in the reaction) mechanism.
Grignard Reaction: This is a organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl, H2SO4 etc.,).
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of epoxides when added to alkenes or alkynes.
To identify: The reagents used to accomplish the given transformation
(c)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept introduction:
Elimination Reaction: It is just reverse reaction of addition where substituent from the given molecule is removed via E1 (the reaction depends only on the substrate involved in the reaction) or E2 (the reaction depends on both of the substituents in the reaction) mechanism.
Grignard Reaction: This is a organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl, H2SO4 etc.,).
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of epoxides when added to alkenes or alkynes.
To identify: The reagents used to accomplish the given transformation
(d)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept introduction:
Elimination Reaction: It is just reverse reaction of addition where substituent from the given molecule is removed via E1 (the reaction depends only on the substrate involved in the reaction) or E2 (the reaction depends on both of the substituents in the reaction) mechanism.
Grignard Reaction: This is a organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl, H2SO4 etc.,).
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of epoxides when added to alkenes or alkynes.
To identify: The reagents used to accomplish the given transformation

Trending nowThis is a popular solution!

Chapter 19 Solutions
ORGANIC CHEMISTRY (LL) >CUSTOM PACKAGE<
- Calculate the pH and the pOH of each of the following solutions at 25 °C for which the substances ionize completely: (a) 0.000259 M HClO4arrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardDetermine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. NaN₃arrow_forward
- A. Draw the structure of each of the following alcohols. Then draw and name the product you would expect to produce by the oxidation of each. a. 4-Methyl-2-heptanol b. 3,4-Dimethyl-1-pentanol c. 4-Ethyl-2-heptanol d. 5,7-Dichloro-3-heptanolarrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardCan I please get help with this.arrow_forward
- Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. N₂H₅ClO₄arrow_forwardPlease help me with identifying these.arrow_forwardCan I please get help with this?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





