Once dark adapted, the pupil of your eye is approximately 7 mm in diameter. The headlights of an oncoming car are 120 cm apart. If the lens of your eye is limited only by diffraction, at what distance are the two headlights marginally resolved? Assume the light’s wavelength in air is 600 nm and the index of refraction inside the eye is 1.33. (Your eye is not really good enough to resolve headlights at this distance, due both to aberrations in the lens and to the size of the receptors in your retina, but it comes reasonably close.)
Once dark adapted, the pupil of your eye is approximately 7 mm in diameter. The headlights of an oncoming car are 120 cm apart. If the lens of your eye is limited only by diffraction, at what distance are the two headlights marginally resolved? Assume the light’s wavelength in air is 600 nm and the index of refraction inside the eye is 1.33. (Your eye is not really good enough to resolve headlights at this distance, due both to aberrations in the lens and to the size of the receptors in your retina, but it comes reasonably close.)
Once dark adapted, the pupil of your eye is approximately 7 mm in diameter. The headlights of an oncoming car are 120 cm apart. If the lens of your eye is limited only by diffraction, at what distance are the two headlights marginally resolved? Assume the light’s wavelength in air is 600 nm and the index of refraction inside the eye is 1.33. (Your eye is not really good enough to resolve headlights at this distance, due both to aberrations in the lens and to the size of the receptors in your retina, but it comes reasonably close.)
Example
Two charges, one with +10 μC of charge, and
another with - 7.0 μC of charge are placed in
line with each other and held at a fixed distance
of 0.45 m. Where can you put a 3rd charge of +5
μC, so that the net force on the 3rd charge is
zero?
*
Coulomb's Law Example
Three charges are positioned as seen below. Charge
1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is -
6.0MC.
What is the magnitude and the direction of the force
on charge 2 due to charges 1 and 3?
93
kq92
F
==
2
r13 = 0.090m
91
r12 = 0.12m
92
Coulomb's Constant: k = 8.99x10+9 Nm²/C²
✓
Make sure to draw a Free Body Diagram as well
Chapter 19 Solutions
College Physics: A Strategic Approach Technology Update, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (3rd Edition)
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.