Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
2nd Edition
ISBN: 9781305717633
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 53E
Use bond energies to estimate the maximum
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Chlorine and bromine are in the same group in the periodic table. The bond energy of a Cl–Cl bond is 240 kJ/mol. The bond energy of a Br–Br bond is 190 kJ/mol. Which statement best explains this difference?
Bromine has more electron levels than chlorine.
Bromine atoms are more likely than chlorine atoms to interact with other atoms.
Chlorine atoms form a double bond, and bromine atoms form a single bond.
Chlorine atoms are larger than bromine atoms.
How many valence electrons are in I?
1
X
S
Carbon-carbon bonds form the “backbone” of nearly everyorganic and biological molecule. The average bond energy of the C−C bond is 347 kJ/mol. Calculate the frequency and wave-length of the least energetic photon that can break an average C−C bond. In what region of the electromagnetic spectrum is this radiation?
Chapter 19 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
Ch. 19 - What are the two most abundant elements by mass in...Ch. 19 - Prob. 2RQCh. 19 - Prob. 3RQCh. 19 - Prob. 4RQCh. 19 - Prob. 5RQCh. 19 - Prob. 6RQCh. 19 - Prob. 7RQCh. 19 - Prob. 8RQCh. 19 - Prob. 9RQCh. 19 - Prob. 10RQ
Ch. 19 - Prob. 1QCh. 19 - Prob. 2QCh. 19 - Prob. 3QCh. 19 - Diagonal relationships in the periodic table exist...Ch. 19 - Prob. 5QCh. 19 - Prob. 6QCh. 19 - Prob. 7QCh. 19 - Prob. 8QCh. 19 - Prob. 9QCh. 19 - Prob. 10QCh. 19 - Prob. 11ECh. 19 - Prob. 12ECh. 19 - Prob. 13ECh. 19 - Prob. 14ECh. 19 - Prob. 15ECh. 19 - Prob. 16ECh. 19 - Prob. 17ECh. 19 - Prob. 18ECh. 19 - Prob. 19ECh. 19 - Prob. 20ECh. 19 - Prob. 21ECh. 19 - Prob. 22ECh. 19 - Prob. 23ECh. 19 - Prob. 24ECh. 19 - Consider element 113. What is the expected...Ch. 19 - Prob. 26ECh. 19 - Prob. 27ECh. 19 - Prob. 28ECh. 19 - Prob. 29ECh. 19 - Prob. 30ECh. 19 - Prob. 31ECh. 19 - Prob. 32ECh. 19 - Prob. 33ECh. 19 - Prob. 34ECh. 19 - The following illustration shows the orbitals used...Ch. 19 - Prob. 36ECh. 19 - Silicon is produced for the chemical and...Ch. 19 - Prob. 38ECh. 19 - Prob. 39ECh. 19 - Prob. 40ECh. 19 - Prob. 41ECh. 19 - Prob. 42ECh. 19 - Prob. 43ECh. 19 - Prob. 44ECh. 19 - Prob. 45ECh. 19 - Prob. 46ECh. 19 - Prob. 47ECh. 19 - Prob. 48ECh. 19 - Prob. 49ECh. 19 - Prob. 50ECh. 19 - Prob. 51ECh. 19 - Prob. 52ECh. 19 - Use bond energies to estimate the maximum...Ch. 19 - Prob. 54ECh. 19 - Prob. 55ECh. 19 - Prob. 56ECh. 19 - Prob. 57ECh. 19 - Prob. 58ECh. 19 - Prob. 59ECh. 19 - Describe the bonding in SO2 and SO3 using the...Ch. 19 - Prob. 61ECh. 19 - Prob. 62ECh. 19 - Prob. 63ECh. 19 - Prob. 64ECh. 19 - Prob. 65ECh. 19 - Prob. 66ECh. 19 - Prob. 67ECh. 19 - Prob. 68ECh. 19 - Prob. 69ECh. 19 - Prob. 70ECh. 19 - Prob. 71ECh. 19 - Prob. 72ECh. 19 - Prob. 73AECh. 19 - The inert-pair effect is sometimes used to explain...Ch. 19 - Prob. 75AECh. 19 - Prob. 76AECh. 19 - Prob. 77AECh. 19 - Prob. 78AECh. 19 - Prob. 79AECh. 19 - Draw Lewis structures for the AsCl4+ and AsCl6...Ch. 19 - Prob. 81AECh. 19 - Prob. 82AECh. 19 - Prob. 83AECh. 19 - Prob. 84AECh. 19 - Prob. 85AECh. 19 - Prob. 86AECh. 19 - Prob. 87CWPCh. 19 - Prob. 88CWPCh. 19 - Prob. 89CWPCh. 19 - Prob. 90CWPCh. 19 - What is the hybridization of the underlined...Ch. 19 - Prob. 92CWPCh. 19 - What is the hybridization of the central atom in...Ch. 19 - Prob. 94CWPCh. 19 - Prob. 95CWPCh. 19 - Prob. 96CWPCh. 19 - Prob. 97CPCh. 19 - Prob. 98CPCh. 19 - Prob. 99CPCh. 19 - Prob. 100CPCh. 19 - Prob. 101CPCh. 19 - Prob. 102CPCh. 19 - Prob. 103CPCh. 19 - Prob. 104CPCh. 19 - Prob. 105CPCh. 19 - Prob. 106IPCh. 19 - Prob. 107IPCh. 19 - Prob. 108IPCh. 19 - Prob. 109IPCh. 19 - Prob. 110MPCh. 19 - Prob. 111MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- It takes 338. kJ/mol to break an carbon-chlorine single bond. Calculate the maximum wavelength of light for which an carbon-chlorine single bond could be broken by absorbing a single photon. Be sure your answer has the correct number of significant digits. olo Ar nm x10 ?arrow_forwardInterconverting wavelength, frequency and photon energy.arrow_forwardwhat is be2+ valence electron configuration?arrow_forward
- The enthalpy change for the reaction between two molecules of carbon oxysulfide (COS) to form one molecule of CO2 and one molecule of CS2, as shown below, is –3.2 × 10–24 kJ per molecule of COS. The bond energy for the C=S bond in CS2 has been determined to be 552 kJ/mol. What is the apparent bond energy of a carbon–sulfur bond in COS? Use the bond energies below. Bonds Bond Energy(kJ/mole) C=S 552 C=O 799 Note: A C=O bond adjacent to another double bond is not the same as a C=O bond that is not adjacent to another double bond.arrow_forwardIt takes 242. kJ/mol to break a chlorine-chlorine single bond. Calculate the maximum wavelength of light for which a chlorine-chlorine single bond could be broken by absorbing a single photon. Be sure your answer has the correct number of significant digits. nm 0 10 Xarrow_forwardConsider an ionic compound, MXMX, composed of generic metal MM and generic, gaseous halogen XX. The enthalpy of formation of MXMX is Δ?∘f=−553ΔHf∘=−553 kJ/mol. The enthalpy of sublimation of MM is Δ?sub=105ΔHsub=105 kJ/mol. The ionization energy of MM is IE=483IE=483 kJ/mol. The electron affinity of XX is Δ?EA=−307ΔHEA=−307 kJ/mol. (Refer to the hint). The bond energy of X2X2 is BE=213BE=213 kJ/mol. Determine the lattice energy of MXMX. Δ?lattice=ΔHlattice= kJ/molarrow_forward
- Use Born-Mayer equation to calculate the lattice energy for PbS (it crystallizes in theNaCl structure). Then, use the Born–Haber cycle to obtain the value of lattice energy for PbS.You will need the following data following data : ΔH Pb(g) = 196 kJ/mol; ΔHf PbS = –98kJ/mol; electron affinities for S(g)→S- (g) is -201 kJ/mol; ) S- (g) →S2-(g) is 640kJ/mol. Ionizationenergies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formationare calculated beginning with the elements in their standard states (S8 for sulfur). Diatomicsulfur, S2, is formed from S8 (ΔHf: S2 (g) = 535 kJ/mol. Can you just do the Born-Haber part?arrow_forwardThe bond energy of O2 is 498 kJ / mol. What is the maximum wavelength of the photonthat has enough energy to break the O=O bond of oxygen?arrow_forwardConsider an ionic compound, MXMX, composed of generic metal MM and generic, gaseous halogen XX. The enthalpy of formation of MXMX is Δ?∘f=−411ΔHf∘=−411 kJ/mol. The enthalpy of sublimation of MM is Δ?sub=101ΔHsub=101 kJ/mol. The ionization energy of MM is IE=461IE=461 kJ/mol. The electron affinity of XX is Δ?EA=−325ΔHEA=−325 kJ/mol. (Refer to the hint). The bond energy of X2X2 is BE=189BE=189 kJ/mol. Determine the lattice energy of MXMX.arrow_forward
- Consider an ionic compound, MXMX, composed of generic metal MM and generic, gaseous halogen XX. The enthalpy of formation of MXMX is Δ?∘f=−553ΔHf∘=−553 kJ/mol. The enthalpy of sublimation of MM is Δ?sub=129ΔHsub=129 kJ/mol. The ionization energy of MM is IE=491IE=491 kJ/mol. The electron affinity of XX is Δ?EA=−325ΔHEA=−325 kJ/mol. (Refer to the hint). The bond energy of X2X2 is BE=219BE=219 kJ/mol. Determine the lattice energy of MXMX. Δ?lattice=ΔHlattice= kJ/molarrow_forwardWhich atom would require the most energy to remove the first electron from the valence shell? Ca Mg Rb Naarrow_forwardWhat is required for an atom to expand its valence shell?Which of the following atoms can expand its valence shell: F, S,H, Al, Se, Cl?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781285199030
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Types of bonds; Author: Edspira;https://www.youtube.com/watch?v=Jj0V01Arebk;License: Standard YouTube License, CC-BY