Concept explainers
(a)
What is the magnetic force on each side of the loop if the magnetic field is
(a)
Answer to Problem 50P
Magnetic force on the top side of loop is
Explanation of Solution
The schematic diagram showing the rectangular loop carrying current is given in figure 1 below. The direction of magnetic field is given to be out of the page. The four sides of the loop is also marked in the figure. Consider each side separately to find the magnitude and direction of force experienced in the loop.
Write the equation to find the force on the top side of the loop.
Here,
Write the equation to find the force on the bottom side of the loop.
Here,
Write the equation to find the force on the left side of the loop.
Here,
Write the equation to find the force on the right side of the loop.
Here,
Conclusion
Substitute
Substitute
Substitute
Substitute
Therefore, Magnetic force on the top side of loop is
(b)
What is the net magnetic force on the loop?
(b)
Answer to Problem 50P
The net magnetic force on the loop is
Explanation of Solution
The net force is the resultant sum of forces in the x and y directions.
Write the equation to find the net force in x direction.
Here,
Write the equation to find the net force in y direction.
Here,
Write the equation to find the sum of x and y component of forces.
Here,
Conclusion:
Substitute
Substitute
Substitute
Therefore, The net magnetic force on the loop is
Want to see more full solutions like this?
Chapter 19 Solutions
Physics
- Please help with this physics problemarrow_forwardPlease help me with this physics problemarrow_forwardIn a scene from The Avengers (the first one) Black Widow is boosted directly upwards by Captain America, where she then grabs on to a Chitauri speeder that is 15.0 feet above her and hangs on. She is in the air for 1.04 s. A) With what initial velocity was Black Widow launched? 1 m = 3.28 ft B) What was Black Widow’s velocity just before she grabbed the speeder? Assume upwards is the positive direction.arrow_forward
- In Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?arrow_forwardA) If Yoshi flings himself downwards at 9.76 miles per hour to hit an enemy 10.5 m below him, how fast is Yoshi traveling when he hits the enemy? 1 mile = 1609 marrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvote Alreadyarrow_forwardTwo objects get pushed by the same magnitude of force. One object is 10x more massive. How does the rate of change of momentum for the more massive object compare with the less massive one? Please be able to explain why in terms of a quantitative statement found in the chapter.arrow_forward
- A box is dropped on a level conveyor belt that is moving at 4.5 m/s in the +x direction in a shipping facility. The box/belt friction coefficient is 0.15. For what duration will the box slide on the belt? In which direction does the friction force act on the box? How far will the box have moved horizontally by the time it stops sliding along the belt?arrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON