Concept explainers
(a)
The direction of the magnetic force on each of the four sides of the rectangle due to the long wire’s magnetic field.
(a)
Answer to Problem 109P
The direction of magnetic force each side of the rectangle is given in below table.
Side | Current direction | Field direction | Force direction |
Top | right | Out of the page | Down: attracted to long wire |
Bottom | Left | Out of the page | Up: repelled by long wire |
Left | Up | Out of the page | Right |
Right | down | Out of the page | left |
Explanation of Solution
Write the expression for the magnitude of magnetic field due to current carrying long wire.
Here,
The direction of magnetic field is given by right hand rule. According to the rule, when the thumb is pointed in the direction of current and the fingers are curled, the direction of fingers represents the direction of magnetic field lines. The tangent of the field line at any point gives the direction of magnetic field at that point.
Since current flows to right, magnetic field points out of the page.
Write the expression for force acting on one side of current carrying rectangular loop of wire.
Here,
The direction of force is given by the direction of
Consider the bottom side of rectangular loop, where current is flowing to the left and magnetic field is out of the page. According to right hand rule, magnetic force acts in the upward direction. That is repelled by long wire.
Consider the top side of rectangular loop, where current is flowing to the right and magnetic field is out of the page. According to right hand rule, magnetic force acts in the downward direction. That is attracted to the long wire.
Consider the left side of rectangular loop, where current is flowing up and magnetic field is out of the page. According to right hand rule, magnetic force acts towards the right.
Consider the right side of rectangular loop, where current is flowing downward and magnetic field is out of the page. According to right hand rule, magnetic force acts toward the left.
Conclusion:
Therefore, the direction of magnetic force each side of the rectangle is given in below table.
Side |
Current direction | Field direction | Force direction |
Top | right | Out of the page | Down: attracted to long wire |
Bottom | Left | Out of the page | Up: repelled by long wire |
Left | Up | Out of the page | Right |
Right | down | Out of the page | left |
(b)
The net magnetic force on the rectangular loop due to the long wire’s magnetic field.
(b)
Answer to Problem 109P
The net magnetic force on the rectangular loop due to the long wire’s magnetic field is
Explanation of Solution
The magnetic field along the left and right side of the rectangular loop have same magnitude at each point of wire. The left and right side of the rectangular loop experience equal magnitude of magnetic force, since the two sides are symmetrically situated with respected to long wire. The top of the loop experiences small magnetic field than bottom side, since radial distance of top side is larger than that of the bottom side.
Since magnetic forces on left and right side of the loop are equal in magnitude and opposite in direction, they cancel each other.
Write the expression for the net force acting on the rectangular loop.
Here,
The negative sign indicates that force on top and bottom side are opposite in direction.
Write the expression to calculate magnitude of magnetic force on each side of wire.
Here,
From equation (I), write the expression for the magnitude of magnetic force on bottom wire.
Here,
From equation (I), write the expression for the magnitude of magnetic force on top wire.
Here,
Write the expression for
Here,
Write the expression for
Here,
Substitute
Here,
Substitute
Substitute
Conclusion:
Substitute
Since answer is positive, the net force must direct along the direction of force acting on the top side of rectangular loop. Therefore, net force is directed away from the long wire.
Therefore, the net magnetic force on the rectangular loop due to the long wire’s magnetic field is
(c)
The magnetic force on the long wire due to the loop.
(c)
Answer to Problem 109P
The magnetic force on the long wire due to the loop is
Explanation of Solution
According to
The net magnetic force on the rectangular loop due to the long wire’s magnetic field is
Conclusion:
The net magnetic force on the rectangular loop due to the long wire’s magnetic field is
Want to see more full solutions like this?
Chapter 19 Solutions
Physics
- 19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON