Concept explainers
(a)
The direction of the magnetic force on each of the four sides of the rectangle due to the long wire’s magnetic field.
(a)
Answer to Problem 109P
The direction of magnetic force each side of the rectangle is given in below table.
Side | Current direction | Field direction | Force direction |
Top | right | Out of the page | Down: attracted to long wire |
Bottom | Left | Out of the page | Up: repelled by long wire |
Left | Up | Out of the page | Right |
Right | down | Out of the page | left |
Explanation of Solution
Write the expression for the magnitude of magnetic field due to current carrying long wire.
Here,
The direction of magnetic field is given by right hand rule. According to the rule, when the thumb is pointed in the direction of current and the fingers are curled, the direction of fingers represents the direction of magnetic field lines. The tangent of the field line at any point gives the direction of magnetic field at that point.
Since current flows to right, magnetic field points out of the page.
Write the expression for force acting on one side of current carrying rectangular loop of wire.
Here,
The direction of force is given by the direction of
Consider the bottom side of rectangular loop, where current is flowing to the left and magnetic field is out of the page. According to right hand rule, magnetic force acts in the upward direction. That is repelled by long wire.
Consider the top side of rectangular loop, where current is flowing to the right and magnetic field is out of the page. According to right hand rule, magnetic force acts in the downward direction. That is attracted to the long wire.
Consider the left side of rectangular loop, where current is flowing up and magnetic field is out of the page. According to right hand rule, magnetic force acts towards the right.
Consider the right side of rectangular loop, where current is flowing downward and magnetic field is out of the page. According to right hand rule, magnetic force acts toward the left.
Conclusion:
Therefore, the direction of magnetic force each side of the rectangle is given in below table.
Side |
Current direction | Field direction | Force direction |
Top | right | Out of the page | Down: attracted to long wire |
Bottom | Left | Out of the page | Up: repelled by long wire |
Left | Up | Out of the page | Right |
Right | down | Out of the page | left |
(b)
The net magnetic force on the rectangular loop due to the long wire’s magnetic field.
(b)
Answer to Problem 109P
The net magnetic force on the rectangular loop due to the long wire’s magnetic field is
Explanation of Solution
The magnetic field along the left and right side of the rectangular loop have same magnitude at each point of wire. The left and right side of the rectangular loop experience equal magnitude of magnetic force, since the two sides are symmetrically situated with respected to long wire. The top of the loop experiences small magnetic field than bottom side, since radial distance of top side is larger than that of the bottom side.
Since magnetic forces on left and right side of the loop are equal in magnitude and opposite in direction, they cancel each other.
Write the expression for the net force acting on the rectangular loop.
Here,
The negative sign indicates that force on top and bottom side are opposite in direction.
Write the expression to calculate magnitude of magnetic force on each side of wire.
Here,
From equation (I), write the expression for the magnitude of magnetic force on bottom wire.
Here,
From equation (I), write the expression for the magnitude of magnetic force on top wire.
Here,
Write the expression for
Here,
Write the expression for
Here,
Substitute
Here,
Substitute
Substitute
Conclusion:
Substitute
Since answer is positive, the net force must direct along the direction of force acting on the top side of rectangular loop. Therefore, net force is directed away from the long wire.
Therefore, the net magnetic force on the rectangular loop due to the long wire’s magnetic field is
(c)
The magnetic force on the long wire due to the loop.
(c)
Answer to Problem 109P
The magnetic force on the long wire due to the loop is
Explanation of Solution
According to
The net magnetic force on the rectangular loop due to the long wire’s magnetic field is
Conclusion:
The net magnetic force on the rectangular loop due to the long wire’s magnetic field is
Want to see more full solutions like this?
Chapter 19 Solutions
Physics
- a) What is the lenght of x? b) Findθ c) Find ϕarrow_forwardA surveyor measures the distance across a straight river by the following method: Starting directly across from a tree on the opposite bank, he walks x = 97.7 m along the riverbank to establish a baseline. Then he sights across to the tree. The angle from his baseline to the tree is θ = 33.0 °. How wide is the river?arrow_forwardA small turtle moves at a speed of 697. furlong/fortnight. Find the speed of the turtle in centimeters per second. Note that 1.00 furlong = 220. yards, 1.00 yard = 3.00 feet, 1.00 foot = 12.0 inches, 1.00 inch = 2.54 cm, and 1.00 fortnight = 14.0 days.arrow_forward
- The landmass of Sokovia lifted in the air in Avengers: Age of Ultron had a volume of about 1.98 km3. What volume is that in m3?arrow_forwardA fathom is a unit of length, usually reserved for measuring the depth of water. A fathom is exactly 6.00 ft in length. Take the distance from Earth to the Moon to be 252,000 miles, and use the given approximation to find the distance in fathoms. 1 mile = 5280 ft. (Answer in sig fig.)arrow_forwardNo chatgpt pls will upvotearrow_forward
- One of the earliest video games to have a plot, Zork, measured distances in “Bloits” where 1 Bloit was defined as the distance the king’s favorite pet could run in one hour, 1,090 m. In the same game the king has a statue made that is 9.00 Bloits high. What is this in meters?arrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- Defination of voltagearrow_forwardAt point A, 3.20 m from a small source of sound that is emitting uniformly in all directions, the intensity level is 58.0 dB. What is the intensity of the sound at A? How far from the source must you go so that the intensity is one-fourth of what it was at A? How far must you go so that the sound level is one-fourth of what it was at A?arrow_forwardMake a plot of the acceleration of a ball that is thrown upward at 20 m/s subject to gravitation alone (no drag). Assume upward is the +y direction (and downward negative y).arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON