![Introductory Chemistry: An Active Learning Approach](https://www.bartleby.com/isbn_cover_images/9781305079250/9781305079250_largeCoverImage.gif)
Interpretation:
The oxidizer and reducer with oxidized and reduced products are to be stated. The
Concept introduction:
The oxidizer is the species whose oxidation state falls during the course of reaction and reducer is the species whose oxidation number increases. Oxidized product is the oxidation product of the reducer and reduced product is the reduction product of the oxidizer.
![Check Mark](/static/check-mark.png)
Answer to Problem 49E
The oxidizer is
The oxidation half-reaction equation is shown below.
The reduction half-reaction equation is shown below.
The balanced redox equation is shown below.
Explanation of Solution
The given redox reaction equation to be balanced is shown below.
The oxidation state of the central metal atom is calculated by knowing the standard oxidation states of few elements.
The oxidation state of chromium in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms of an element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation as shown below.
Divide by two on both sides and simplify as shown below.
The oxidation state of chromium in
The oxidation state of chromium in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms of an element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation as shown below.
Divide by two on both sides and simplify as shown below.
The oxidation state of chromium in
The oxidation state of the nitrogen in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms of an element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation as shown below.
The oxidation state of nitrogen is
The oxidation number of nitrogen in
The chromium in
Therefore, the oxidizer is
The oxidation half-reaction equation for the above equation is shown below.
The balancing of the half-reactions is done by the following the steps shown below.
Step-1: Identify and balance the element getting oxidized or reduced.
The nitrogen is getting oxidized and the number of atoms of that is not balanced on both sides of the equation. Multiply ammonium ion by two to balance the nitrogen.
Step-2: Balance elements other than oxygen and hydrogen if any.
Step-3: Balance oxygen atoms by adding water on the appropriate side.
Step-4: Balance the hydrogen atoms by adding
The number of hydrogen atoms is balanced by adding the eight
Step-5: Balance the charge by adding electrons to the appropriate side.
Six electrons are added to the right-hand side in order to balance the charge.
Step-6: Recheck the equation to be sure that it is perfectly balanced.
The equation is completely balanced and is shown below.
The reduction half-reaction for the above reaction is shown below.
The balancing of the half-reactions is done by the following the steps shown below.
Step-1: Identify and balance the element getting oxidized or reduced.
The chromium is getting reduced and its number of atoms is balanced on both sides.
Step-2: Balance elements other than oxygen and hydrogen if any.
Step-3: Balance oxygen atoms by adding water on the appropriate side.
The number of oxygen atoms is balanced by adding four water molecules on the right-hand side of the equation.
Step-4: Balance the hydrogen atoms by adding
The number of hydrogen atoms is balanced by adding eight
Step-5: Balance the charge by adding electrons to the appropriate side.
The charge is balanced by adding six electrons on the left-hand side of the equation.
Step-6: Recheck the equation to be sure that it is perfectly balanced.
The equation is completely balanced and is shown below.
The balanced redox equation is obtained by adding equation (1) and (2) in such a way that electrons are canceled out.
Add equation (1) and (2) and cancel out the common things on both sides of the equation.
The balance redox equation after adding these equations is shown below.
The oxidizer and reducer with oxidized and reduced products, oxidation and reduction half-reaction equations, and balanced redox equation are rightfully stated above.
Want to see more full solutions like this?
Chapter 19 Solutions
Introductory Chemistry: An Active Learning Approach
- How exactly is carbon disulfide used in industry? Specifically, where does it come in during rubber or textile production and what is the chemical processes?arrow_forwardA researcher has developed a new analytical method to determine the percent by mass iron in solids. To test the new method, the researcher purchases a standard reference material sample that is 2.85% iron by mass. Analysis of the iron standard with the new method returns values of 2.75%, 2.89%, 2.77%, 2.81%, and 2.87%. Does the new method produce a result that is significantly different from the standard value at the 95% confidence level?arrow_forwardCreate a drawing of an aceral with at least 2 isopropoxy groups, and a total of 11 carbon atomsarrow_forward
- 4. Predict the major product(s) for each of the following reactions. HBr (1 equiv.) peroxide, A a. b. NBS, peroxide, Aarrow_forwardIn addition to the separation techniques used in this lab (magnetism, evaporation, and filtering), there are other commonly used separation techniques. Some of these techniques are:Distillation – this process is used to separate components that have significantly different boiling points. The solution is heated and the lower boiling point substance is vaporized first. The vapor can be collected and condensed and the component recovered as a pure liquid. If the temperature of the mixture is then raised, the next higher boiling component will come off and be collected. Eventually only non-volatile components will be left in the original solution.Centrifugation – a centrifuge will separate mixtures based on their mass. The mixture is placed in a centrifuge tube which is then spun at a high speed. Heavier components will settle at the bottom of the tube while lighter components will be at the top. This is the technique used to separate red blood cells from blood plasma.Sieving – this is…arrow_forwardBriefly describe a eutectic system.arrow_forward
- man Campus Depa (a) Draw the three products (constitutional isomers) obtained when 2-methyl-3-hexene reacts with water and a trace of H2SO4. Hint: one product forms as the result of a 1,2-hydride shift. (1.5 pts) This is the acid-catalyzed alkene hydration reaction.arrow_forwardNonearrow_forward. • • Use retrosynthesis to design a synthesis Br OHarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)