(a)
The temperature after the adiabatic expansion.
(a)
Answer to Problem 47P
The temperature after the adiabatic expansion is
Explanation of Solution
Given:
The initial pressure of gas is
The initial temperature is
The final temperature is
Formula used:
The temperature after the adiabatic expansion is given as,
Here,
The volume after adiabatic expansion is given as,
Here,
The final pressure is given as,
Calculation:
The volume occupied by the gas at
For the fixed amount of gas the pressure at adiabatic expansion is can be calculated as,
The final pressure is calculated as,
The volume after adiabatic expansion is calculated as,
The temperature after the adiabatic expansion is calculated as,
Conclusion:
Therefore, the temperature after the adiabatic expansion is
(b)
The heat absorbed or released by the system during each step.
(b)
Answer to Problem 47P
The heat energy absorbed during the process 1-2 is
Explanation of Solution
Formula used:
The heat energy during the constant volume process 1-2 is given as,
Here,
Here,
The heat energy during the constant pressure process 3-1 is given as,
Here,
Calculation:
The heat energy during the constant volume process 1-2 is calculated as,
The process 2-3 is an adiabatic process. The heat energy for the process 2-3 is calculated as,
The heat energy during the constant pressure process 3-1 is given as,
The negative sign shows that heat is released during the process.
Conclusion:
Therefore, the heat energy absorbed during the process 1-2 is
(c)
The efficiency of the cycle.
(c)
Answer to Problem 47P
The efficiency of the cycle is
Explanation of Solution
Formula used:
The efficiency of the cycle is given as,
Here,
The total work during the cycle is given as,
Calculation:
The total work during the cycle is calculated as,
The efficiency of the cycle is calculated as,
Further solving the above equation as,
Conclusion:
Therefore, the efficiency of the cycle is
(d)
The efficiency of a Carnot cycle operating between the extreme temperatures.
(d)
Answer to Problem 47P
The efficiency of a Carnot cycle operating between the extreme temperatures is
Explanation of Solution
Formula used:
The efficiency of the Carnot cycle at extreme temperature (
Calculation:
The efficiency of the Carnot cycle at extreme temperature (
Further solving the above equation as,
Conclusion:
Therefore, the efficiency of a Carnot cycle operating between the extreme temperatures is
Want to see more full solutions like this?
Chapter 19 Solutions
Physics for Scientists and Engineers
- An ideal gas initially at 300 K undergoes an isobaric expansion at 2.50 kPa. If the volume increases from 1.00 m3 to 3.00 m3 and 12.5 kJ is transferred to the gas by heat, what are (a) the change in its internal energy and (b) its final temperature?arrow_forwardA sample of a monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A in Fig. P17.68). It is warmed at constant volume to 3.00 atm (point B). Then it is allowed to expand isothermally to 1.00 atm (point C) and at last compressed isobarically to its original state. (a) Find the number of moles in the sample. Find (b) the temperature at point B, (c) the temperature at point C, and (d) the volume at point C. (e) Now consider the processes A B, B C, and C A. Describe how to carry out each process experimentally. (f) Find Q, W, and Eint for each of the processes. (g) For the whole cycle A B C A, find Q, W, and Eint. Figure P17.68arrow_forwardA 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of 5.00 atm and a volume of 12.0 L to a final volume of 30.0 L. (a) What is the final pressure of the gas? (b) What are the initial and final temperatures? Find (c) Q, (d) Eint, and (e) W for the gas during this process.arrow_forward
- One mole of an ideal gas does 3 000 J of work on its surroundings as it expands isothermally to a final pressure of 1.00 atm and volume of 25.0 L. Determine (a) the initial volume and (b) the temperature of the gas.arrow_forwardFor a temperature increase of 10 at constant volume, what is the heat absorbed by (a) 3.0 mol of a dilute monatomic gas; (b) 0.50 mol of a dilute diatomic gas; and (c) 15 mol of a dilute polyatomic gas?arrow_forwardAn ideal gas with specific heat ratio confined to a cylinder is put through a closed cycle. Initially, the gas is at Pi, Vi, and Ti. First, its pressure is tripled under constant volume. It then expands adiabatically to its original pressure and finally is compressed isobarically to its original volume. (a) Draw a PV diagram of this cycle. (b) Determine the volume at the end of the adiabatic expansion. Find (c) the temperature of the gas at the start of the adiabatic expansion and (d) the temperature at the end of the cycle. (e) What was the net work done on the gas for this cycle?arrow_forward
- An ideal gas has a pressure of 0.50 atm and a volume of 10 L. It is compressed adiabatically and quasi-statically until its pressure is 3.0 atm and its volume is 2.8 L. Is the monatomic, diatomic, or polyatomic?arrow_forwardA sample of a monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A in Fig. P21.65). It is warmed at constant volume to 3.00 atm (point B). Then it is allowed to expand isothermally to 1.00 atm (point C) and at last compressed isobarically to its original state, (a) Find the number of moles in the sample. Find (b) the temperature at point B, (c) the temperature at point C, and (d) the volume at point C. (e) Now consider the processes A B, B C, and C A. Describe how to carry out each process experimentally, (f) Find Q, W, and Eint for each of the processes, (g) For the whole cycle A B C A, find Q, W, and Eint.arrow_forwardDuring the power stroke in a four-stroke automobile engine, the piston is forced down as the mixture of combustion products and air undergoes an adiabatic expansion. Assume (1) the engine is running at 2 500 cycles/min; (2) the gauge pressure immediately before the expansion is 20.0 atm; (3) the volumes of the mixture immediately before and after the expansion are 50.0 cm3 and 400 cm3, respectively (Fig. P21.31); (4) the time interval for the expansion is one-fourth that of the total cycle; and (5) the mixture behaves like an ideal gas with specific heat ratio 1.40. Find the average power generated during the power stroke.arrow_forward
- If a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases, (d) The internal energy of the gas remains constant, (e) None of those statements is true.arrow_forwardA car tile contains 0.0380 m3 of air at a pressure of 2.20105 Pa (about 32 psi). How much more internal energy does this gas have than the same volume has at zero gauge pressure (which is equivalent to normal atmospheric pressure)?arrow_forwardAn amount of n moles of a monatomic ideal gas in a conducting container with a movable piston is placed in a large thermal heat bath at temperature T1 and the gas is allowed to come to equilibrium. After the equilibrium is leached, the pressure on the piston is lowered so that the gas expands at constant temperature. The process is continued quasi-statically until the final pressure is 4/3 of the initial pressure p1 . (a) Find the change in the internal energy of the gas. (b) Find the work done by the gas. (c) Find the heat exchanged by the gas, and indicate, whether the gas takes in or gives up heat.arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning