COLLEGE PHYSICS:VOL.1
2nd Edition
ISBN: 9780134862897
Author: ETKINA
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 42P
* Home wiring A simplified electrical circuit for a home is shown in Figure P19.42. (a) Determine the currents through the circuit breaker, the lightbulb, the microwave oven, and the toaster. (b) Determine the electric power used by each appliance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please solve and answer this problem correctly please. Thank you!!
Please solve and answer this problem correctly please. Thank you!!
a) Use the node-voltage method to find v1, v2, and
v3 in the circuit in Fig. P4.14.
b) How much power does the 40 V voltage source
deliver to the circuit?
Figure P4.14
302
202
w
w
+
+
+
40 V
V1
80 Ω 02
ΣΑΩ
28 A
V3 +
w
w
102
202
Chapter 19 Solutions
COLLEGE PHYSICS:VOL.1
Ch. 19 - Review Question 19.1 What condition(s) is/are...Ch. 19 - Review Question 19.2 Describe the changes in...Ch. 19 - Review Question 19.3 Explain the meaning of the...Ch. 19 - Review Question 19.4 Why does it make sense that...Ch. 19 - Review Question 19.5 What experimental evidence...Ch. 19 - Review Question 19.6 Eugenia says that the power...Ch. 19 - Review Question 19.7 Where is the electric...Ch. 19 - Review Question 19.8 Rank the four identical bulbs...Ch. 19 - Review Question 19.9 What does it mean when you...Ch. 19 - Review Question 19.10 Why does the resistance of a...
Ch. 19 - Two identical bulbs are connected on parallel...Ch. 19 - Compare the potential difference across bulbs 1...Ch. 19 - Two identical bulbs are in series as shown in...Ch. 19 - 4. Which statement below about the potential...Ch. 19 - Three circuits with identical bulbs and emf...Ch. 19 - 6. Rank in order the potential differences across...Ch. 19 - 7. Rank in order the five identical bulbs in the...Ch. 19 - Four identical bulbs are shown in the circuit in...Ch. 19 - Four identical bulbs are shown in the circuit in...Ch. 19 - Consider the circuit in Figure Q19.10. The switch...Ch. 19 - 11. Figure Q19.1 shows graphs for an incandescent...Ch. 19 - If an electric current were due to electrons...Ch. 19 - 13. Three light sources (a lightbulb, a blue LED ...Ch. 19 - What is the role of a battery in an electric...Ch. 19 - 16. Compare and contrast the physical quantities...Ch. 19 - Birds on high power lines Why can birds perch on a...Ch. 19 - 18. Preventing electric shock When a person is...Ch. 19 - (a) Using a voltmeter, how can you determine the...Ch. 19 - (a) What does it mean if the current through a...Ch. 19 - 21. Resistors become warm when there is an...Ch. 19 - At one time aluminum rather than copper wires were...Ch. 19 - 23. How do you connect an ammeter in a circuit to...Ch. 19 - Why do we connect electric devices in a home in...Ch. 19 - 26. Construct an electric circuit that is...Ch. 19 - 27. Most Christmas tree lights with incandescent...Ch. 19 - 28. Two students are arguing. Student A says that...Ch. 19 - Use the laws of energy and charge conservation to...Ch. 19 - When you close the switch in the circuit in Figure...Ch. 19 - 1. A bulb in a table lamp has a current of 0.50 A...Ch. 19 - A long wire is connected to the terminals of a...Ch. 19 - A typical flashlight battery will produce a 0.50-A...Ch. 19 - 4. * Four friends each have a battery, a bulb, and...Ch. 19 - 5. Draw a circuit that has a battery, a lightbulb,...Ch. 19 - Add another battery to the circuit described in...Ch. 19 - Add another lightbulb to the circuit with one...Ch. 19 - A 9.0-V battery is connected to a resistor so that...Ch. 19 - 10. * A graph of the electric potential versus...Ch. 19 - 11. Sketch a potential-versus-location graph for...Ch. 19 - 12. Bio Electric currents in the body A person...Ch. 19 - 13. An automobile lightbulb has a 1.0-A current...Ch. 19 - * If a long wire is connected to the terminals of...Ch. 19 - Determine the current through a 2.5- resistor when...Ch. 19 - 16. * You have a circuit with a 50-Ω, a 100- Ω,...Ch. 19 - You have a circuit with a 50-, a 100- , and a 150-...Ch. 19 - 18. * A toy has two red LEDs (), two green LEDs...Ch. 19 - * You want to power a green LED (VOpenG=2.1V) and...Ch. 19 - 20. * A circuit consists of a green LED and a ...Ch. 19 - 21. * You connect a 50-Ω resistor to a 9-V battery...Ch. 19 - 22. * EST Making tea You use an electric teapot to...Ch. 19 - * If a long wire is connected to the terminals of...Ch. 19 - ** Three friends are arguing with each other. Adam...Ch. 19 - 25. * You have a 40-W lightbulb and a 100-W bulb....Ch. 19 - * Does a 60-W lightbulb have more or less...Ch. 19 - 27. * (a) Write two loop rule equations and one...Ch. 19 - 28. * (a) Write Kirchhoff's loop rule for the...Ch. 19 - 29. * Repeat parts (a) and (b) of the previous...Ch. 19 - * (a) Determine the value of 1 so that there is a...Ch. 19 - 31. ** The current through resistor in Figure...Ch. 19 - andR3 shown in Figure P19.27 satisfy the relation...Ch. 19 - 33. * (a) Write the loop rule for two different...Ch. 19 - 34. ** Determine the value of , shown in Figure...Ch. 19 - * Determine (a) the equivalent resistance of...Ch. 19 - 36. (a) Determine the equivalent resistance of...Ch. 19 - 37. * Determine the equivalent resistance of the...Ch. 19 - * Determine (a) the equivalent resistance of the...Ch. 19 - You close the switch in the circuit in Figure...Ch. 19 - * You close the switch in the circuit in Figure...Ch. 19 - 42. * Home wiring A simplified electrical circuit...Ch. 19 - 43. ** (a) Write Kirchhoff's rules for two loops...Ch. 19 - of internal resistance. Because each row has the...Ch. 19 - 45. Home wiring A 120-V electrical line m a home...Ch. 19 - * Tree lights Nine tree lights are connected m...Ch. 19 - 47. * Two lightbulbs use 30 W and 60 W,...Ch. 19 - * Three identical resistors, when connected in...Ch. 19 - . (a) Determine the power delivered to a resistor...Ch. 19 - * Determine the equivalent resistance of the...Ch. 19 - 51 toI4 from largest to smallest Assume all wires...Ch. 19 - Figure P19.52 shows a real circuit that consists...Ch. 19 - * A 100-m-long copper wire of radius 0.12 mm and...Ch. 19 - 54. * BMT subway rail resistance The BMT subway...Ch. 19 - * Thermometer A platinum resistance thermometer...Ch. 19 - As the potential difference in volts across a thin...Ch. 19 - 57. * BIO Respiration detector A respiration...Ch. 19 - * A wire whose resistance is R is stretched so...Ch. 19 - 59. * Ratio reasoning Determine the ratio of the...Ch. 19 - ** Electronics detective You need to determine the...Ch. 19 - 61. * A battery produces a 2.0-A current when...Ch. 19 - 62. * Resistance of human nerve cell Some human...Ch. 19 - 63. * Conductive textiles Metal strands can be...Ch. 19 - 64. * EST Figure P19.64 shows an I-versus-V graph...Ch. 19 - * EST Figure P19.64 shows an I-versus- V graph for...Ch. 19 - *EST Figure P19.64 shows an I-versus- V graph for...Ch. 19 - * Wiring high-fidelity speakers Your high-fidelity...Ch. 19 - 68 * BIO EST Lifting forearm by electric current...Ch. 19 - 69. * EST Switches You have a power supply, a 10-W...Ch. 19 - ** Wiring a staircase Devise an electric circuit...Ch. 19 - 72. ** EST Electric water heater An electric hot...Ch. 19 - 73. ** BIO EST The hands and arms as a conductor...Ch. 19 - 75. * A nickel wire of length L and a voltmeter...Ch. 19 - ** Solve the previous problem if the internal...Ch. 19 - * EST Figure P19.77 shows an | I | -versus-V graph...Ch. 19 - VI a. Connect a voltmeter to a batterys terminals....Ch. 19 - equaled the number of electrons passing a cross...Ch. 19 - 80. * A 5.0-A current caused by moving electrons...Ch. 19 - 81. ** BIO Current across membrane wall of axon An...Ch. 19 - BIO Signals in nerve cells stimulate muscles The...Ch. 19 - BIO Signals in nerve cells stimulate muscles The...Ch. 19 - BIO Signals in nerve cells stimulate muscles The...Ch. 19 - BIO Signals in nerve cells stimulate muscles The...Ch. 19 - 86. The horizontal 4-Ω resistors in the two...Ch. 19 - 87. Suppose nerve impulses travel at 100 m/s in...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
Where are skeletal cartilages located?
Human Anatomy & Physiology (2nd Edition)
Describe an example of bioconversion. What metabolic processes can result in fuels?
Microbiology: An Introduction
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Calculate the molarity of each solution. a. 22.6 g of C12H22O11 in 0.442 L of solution b. 42.6 g of NaCl in 1.5...
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please solve and answer this problem correctly please. Thank you!!arrow_forwardYou're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have Question 2 options: sped up at perihelion sped up at aphelion slowed down at perihelion slowed down at aphelionarrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forward
- The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardNo chatgpt pls will upvotearrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forward
- ་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Domestic Electric Circuits; Author: PrepOnGo Class 10 & 12;https://www.youtube.com/watch?v=2ZvWaloQ3nk;License: Standard YouTube License, CC-BY