
Appendices to accompany Fundamentals of Engineering Thermodynamics, 8e
8th Edition
ISBN: 9781118957219
Author: Michael J. Moran, Howard N. Shapiro
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1.9, Problem 41CU
To determine
Whether the statement is true or false “Pressure is an intensive property”.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Where on the below beam is the Maxiumum Slope likely to occur?
120
Point A
Point B
Point C
Point B or Point C
B
с
A very thin metallic sheet is placed between two wood plates of different thicknesses. Theplates are firmly pressed together and electricity is passed through the sheet. The exposed surfaces ofthe two plates lose heat to the ambient fluid by convection. Assume uniform heating at the interface.Neglect end effects and assume steady state.[a] Will the heat transfer through the two plates be the same? Explain.[b] Will the exposed surfaces be at the same temperature? Explain
Design consideration requires that the surface of a small electronic package be maintained at atemperature not to exceed 82 o C. Noise constraints rule out the use of fans. The power dissipated inthe package is 35 watts and the surface area is 520 cm2 . The ambient temperature and surroundingwalls are assumed to be at 24 o C. The heat transfer coefficient is estimated to be 9.2 W/m2- oC andsurface emissivity is 0.7. Will the package dissipate the required power without violating designconstraints?
Chapter 1 Solutions
Appendices to accompany Fundamentals of Engineering Thermodynamics, 8e
Ch. 1.9 - Prob. 1ECh. 1.9 - Prob. 2ECh. 1.9 - 3. The driver’s compartment of race cars can reach...Ch. 1.9 - 4. What causes changes in atmospheric pressure?
Ch. 1.9 - 5. Why are passenger airplane cabins normally...Ch. 1.9 - 6. Laura takes an elevator from the tenth floor of...Ch. 1.9 - 7. How do dermatologists remove precancerous skin...Ch. 1.9 - 8. When one walks barefoot from a carpet onto a...Ch. 1.9 - 9. Why does ocean water temperature vary with...Ch. 1.9 - 10. Are the systolic and diastolic pressures...
Ch. 1.9 - 11. How do forehead temperature strips work?
Ch. 1.9 - 12. How does a pressure measurement of 14.7 psig...Ch. 1.9 - 13. What is a nanotubel
Ch. 1.9 - 14. If a system is at steady state, does this mean...Ch. 1.9 - For problems 1-10, match the appropriate...Ch. 1.9 - Prob. 11CUCh. 1.9 - 12. Describe the difference between specific...Ch. 1.9 - 13. A system is said to be at ___________ if none...Ch. 1.9 - 14. A control volume is a system that
(a) always...Ch. 1.9 - 15. What is the objective of an engineering model...Ch. 1.9 - 16. _______________ is pressure with respect to...Ch. 1.9 - 17. A gas contained within a piston–cylinder...Ch. 1.9 - 18. The statement, “When two objects are in...Ch. 1.9 - 19. SI base units include
(a) kilogram (kg), meter...Ch. 1.9 - 20. Explain why the value for gage pressure is...Ch. 1.9 - 21. A system is at steady state if
(a) none of its...Ch. 1.9 - Prob. 22CUCh. 1.9 - 23. Classify items a through g shown on the...Ch. 1.9 - 24. When a system is isolated,
(a) its mass...Ch. 1.9 - 25. The resultant pressure force acting on a body...Ch. 1.9 - 26. The list consisting only of intensive...Ch. 1.9 - 27. Gage pressure indicates the difference between...Ch. 1.9 - 28. Systems can be studied only from a macroscopic...Ch. 1.9 - 29. Kilogram, second, foot, and newton are all...Ch. 1.9 - Prob. 30CUCh. 1.9 - 31. Mass is an intensive property.
Ch. 1.9 - Prob. 32CUCh. 1.9 - 33. Intensive properties may be functions of both...Ch. 1.9 - 34. Devices that measure pressure include...Ch. 1.9 - Prob. 35CUCh. 1.9 - 36. If a system is isolated from its surroundings...Ch. 1.9 - 37. The specific volume is the reciprocal of the...Ch. 1.9 -
Indicate whether the following statements are...Ch. 1.9 - 39. The pound force, lbf, is equal to the pound...Ch. 1.9 - 40. The value of a temperature expressed using the...Ch. 1.9 - Prob. 41CUCh. 1.9 - 42. A closed system always contains the same...Ch. 1.9 - Prob. 43CUCh. 1.9 - 44. A control volume is a special type of closed...Ch. 1.9 - 45. When a closed system undergoes a process...Ch. 1.9 - Prob. 46CUCh. 1.9 - Prob. 47CUCh. 1.9 - 48. A vessel holding 0.5 kg of oxygen (O2)...Ch. 1.9 - Prob. 49CUCh. 1.9 - 50. In local surroundings at standard atmospheric...Ch. 1.9 - Prob. 51CUCh. 1.9 - 52. The Rankine degree is a smaller temperature...Ch. 1.9 - 53. If the value of any property of a system...Ch. 1.9 - Prob. 54CUCh. 1.9 - 55. The composition of a closed system cannot...Ch. 1.9 - 56. Temperature is the property that is the same...Ch. 1.9 - Prob. 57CUCh. 1.9 - 58. The pressure unit psia indicates an absolute...Ch. 1.9 - 1.4 Perform the following unit conversions:
(a) 1...Ch. 1.9 - 1.5 Perform the following unit conversions:
(a)...Ch. 1.9 - 1.6 Which of the following food items weighs...Ch. 1.9 - 1.7 A person whose mass is 150 lb weighs 144.4...Ch. 1.9 - 1.8 The Phoenix with a mass of 350 kg was a...Ch. 1.9 - Prob. 9PCh. 1.9 - 1.10 In severe head-on automobile accidents, a...Ch. 1.9 - Prob. 11PCh. 1.9 - 1.12 A spring compresses in length by 0.14 in, for...Ch. 1.9 - 1.13 At a certain elevation, the pilot of a...Ch. 1.9 - 1.14 Estimate the magnitude of the force, in Ibf,...Ch. 1.9 - 1.15 Determine the upward applied force, in Ibf,...Ch. 1.9 -
1.16 An object is subjected to an applied upward...Ch. 1.9 - 1.17 A communications satellite weighs 4400 N on...Ch. 1.9 - 1.18 Using local acceleration of gravity data from...Ch. 1.9 - 1.19 A town has a 1-million-gallon storage...Ch. 1.9 - 1.20 A closed system consists of 0.5 kmol of...Ch. 1.9 - 1.21 A 2-lb sample of an unknown liquid occupies a...Ch. 1.9 - Prob. 22PCh. 1.9 - 1.23 The specific volume of 5 kg of water vapor at...Ch. 1.9 - Prob. 24PCh. 1.9 - 1.25 As shown in Figure P1.25, a gas is contained...Ch. 1.9 - 1.26 As shown in Fig. P1.26, a vertical...Ch. 1.9 - 1.27 Three kg of gas in a piston-cylinder assembly...Ch. 1.9 - 1.28 A closed system consisting of 4 lb of a gas...Ch. 1.9 - 1.29 A system consists of carbon monoxide (CO) in...Ch. 1.9 - 1.30 Figure P1.30 shows a gas contained in a...Ch. 1.9 - 1.31 A gas contained within a piston-cylinder...Ch. 1.9 - Prob. 32PCh. 1.9 - 1.33 Figure P 1.33 shows a storage tank holding...Ch. 1.9 - 1.34 As shown in Figure PI.34, the exit of a gas...Ch. 1.9 - 1.35 The barometer shown in Fig. P1.35 contains...Ch. 1.9 - Prob. 36PCh. 1.9 - Figure P1.37 shows a tank within a tank, each...Ch. 1.9 - 1.38 As shown in Fig. PI.38, an underwater...Ch. 1.9 - 1.39 Show that a standard atmospheric pressure of...Ch. 1.9 - 1.40 A gas enters a compressor that provides a...Ch. 1.9 - 1.41 As shown in Figure P1.41. air is contained in...Ch. 1.9 - Prob. 42PCh. 1.9 - 1.43 The pressure from water mains located at...Ch. 1.9 - 1.44 Figure P1.44 shows a tank used to collect...Ch. 1.9 - 1.45 If the water pressure at the base of the...Ch. 1.9 - 1.46 As shown in Figure P1.46. an inclined...Ch. 1.9 - 1.47 Figure P1.47 shows a spherical buoy, having a...Ch. 1.9 - 1.48 Because of a break in a buried oil storage...Ch. 1.9 - 1.49 Figure P1.49 shows a closed tank holding air...Ch. 1.9 - 1.50 The 30-year average temperature in Toronto,...Ch. 1.9 - 1.51 Convert the following temperatures from °F to...Ch. 1.9 - Prob. 52PCh. 1.9 - 1.53 A cake recipe specifies an oven temperature...Ch. 1.9 - 1.54 Does the Rankine degree represent a larger or...Ch. 1.9 - 1.55 Figure P1.55 shows a system consisting of a...Ch. 1.9 - What is (a) the lowest naturally occurring...Ch. 1.9 - 1.57 Air temperature rises from a morning low of...Ch. 1.9 - 1.58 For liquid-in-glass thermometers, the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider radiation from a small surface at 100 oC which is enclosed by a much larger surface at24 o C. Determine the percent increase in the radiation heat transfer if the temperature of the smallsurface is doubled.arrow_forwardA small electronic package with a surface area of 820 cm2 is placed in a room where the airtemperature is 28 o C. The heat transfer coefficient is 7.3 W/m2 - o C. You are asked to determine if it isjustified to neglect heat loss from the package by radiation. Assume a uniform surface temperature of78 o C and surface emissivity of 0.65 Assume further that room’s walls and ceiling are at a uniformtemperature of 16 o C.arrow_forwardA hollow metal sphere of outer radius or = 2 cm is heated internally with a variable output electricheater. The sphere loses heat from its surface by convection and radiation. The heat transfercoefficient is 22 W/ m2 - o C and surface emissivity is 0.92. The ambient fluid temperature is 20 o C andthe surroundings temperature is 14 oC. Construct a graph of the surface temperature corresponding toheating rates ranging from zero to 100 watts. Assume steady state. Use a simplified model forradiation exchange based on a small gray surface enclosed by a much larger surface at 14 o C.arrow_forward
- 2. A program to make the part depicted in Figure 26.A has been created, presented in figure 26.B, but some information still needs to be filled in. Compute the tool locations, depths, and other missing information to present a completed program. (Hint: You may have to look up geometry for the center drill and standard 0.5000 in twist drill to know the required depth to drill). Dashed line indicates - corner of original stock Intended toolpath-tangent - arc entry and exit sized to programmer's judgment 026022 (Slot and Drill Part) (Setup Instructions. (UNITS: Inches (WORKPIECE MAT'L: SAE 1020 STEEL (Workpiece: 3.25 x 2.00 x0.75 in. Plate (PRZ Location G54: ( XY 0.0 Upper Left of Fixture ( TOP OF PART 2-0 (Tool List: ) ( T04 T02 0.500 IN 4 FLUTE FLAT END MILL) #4 CENTER DRILL ' T02 0.500 TWIST DRILL N010 GOO G90 G17 G20 G49 G40 G80 G54 N020 M06 T02 (0.5 IN 4-FLUTE END MILL) R0.750 N030 S760 M03 G00 x N040 043 H02 2 Y (P1) (RAPID DOWN -TLO) P4 NO50 MOB (COOLANT ON) N060 G01 X R1.000 N070…arrow_forward6–95. The reaction of the ballast on the railway tie can be assumed uniformly distributed over its length as shown. If the wood has an allowable bending stress of σallow=1.5 ksi, determine the required minimum thickness t of the rectangular cross section of the tie to the nearest 18 in. Please include all steps. Also if you can, please explain how you found Mmax using an equation rather than using just the moment diagram. Thank you!arrow_forward6–53. If the moment acting on the cross section is M=600 N⋅m, determine the resultant force the bending stress produces on the top board. Please explain each step. Please explain how you got the numbers and where you plugged them in to solve the problem. Thank you!arrow_forward
- Solving coplanar forcesarrow_forwardComplete the following problems. Show your work/calculations, save as.pdf and upload to the assignment in Blackboard. 1. What are the x and y dimensions for the center position of holes 1,2, and 3 in the part shown in Figure 26.2 (below)? 6.0000 7118 Zero reference point 1.0005 1.0000 1.252 Bore C' bore 1.250 6.0000 .7118 0.2180 deep (3 holes) 2.6563 1.9445 3.000 diam. slot 0.3000 deep. 0.3000 wide 2.6563 1.9445arrow_forwardComplete the following problems. Show your work/calculations, save as.pdf and upload to the assignment in Blackboard. missing information to present a completed program. (Hint: You may have to look up geometry for the center drill and standard 0.5000 in twist drill to know the required depth to drill). 1. What are the x and y dimensions for the center position of holes 1,2, and 3 in the part shown in Figure 26.2 (below)? 6.0000 Zero reference point 7118 1.0005 1.0000 1.252 Bore 6.0000 .7118 Cbore 0.2180 deep (3 holes) 2.6563 1.9445 Figure 26.2 026022 (8lot and Drill Part) (Setup Instructions--- (UNITS: Inches (WORKPIECE NAT'L SAE 1020 STEEL (Workpiece: 3.25 x 2.00 x0.75 in. Plate (PRZ Location 054: ' XY 0.0 - Upper Left of Fixture TOP OF PART 2-0 (Tool List ( T02 0.500 IN 4 FLUTE FLAT END MILL #4 CENTER DRILL Dashed line indicates- corner of original stock ( T04 T02 3.000 diam. slot 0.3000 deep. 0.3000 wide Intended toolpath-tangent- arc entry and exit sized to programmer's judgment…arrow_forward
- A program to make the part depicted in Figure 26.A has been created, presented in figure 26.B, but some information still needs to be filled in. Compute the tool locations, depths, and other missing information to present a completed program. (Hint: You may have to look up geometry for the center drill and standard 0.5000 in twist drill to know the required depth to drill).arrow_forwardWe consider a laminar flow induced by an impulsively started infinite flat plate. The y-axis is normal to the plate. The x- and z-axes form a plane parallel to the plate. The plate is defined by y = 0. For time t <0, the plate and the flow are at rest. For t≥0, the velocity of the plate is parallel to the 2-coordinate; its value is constant and equal to uw. At infinity, the flow is at rest. The flow induced by the motion of the plate is independent of z. (a) From the continuity equation, show that v=0 everywhere in the flow and the resulting momentum equation is მu Ət Note that this equation has the form of a diffusion equation (the same form as the heat equation). (b) We introduce the new variables T, Y and U such that T=kt, Y=k/2y, U = u where k is an arbitrary constant. In the new system of variables, the solution is U(Y,T). The solution U(Y,T) is expressed by a function of Y and T and the solution u(y, t) is expressed by a function of y and t. Show that the functions are identical.…arrow_forwardPart A: Suppose you wanted to drill a 1.5 in diameter hole through a piece of 1020 cold-rolled steel that is 2 in thick, using an HSS twist drill. What values if feed and cutting speed will you specify, along with an appropriate allowance? Part B: How much time will be required to drill the hole in the previous problem using the HSS drill?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics: Maxwell relations proofs 1 (from ; Author: lseinjr1;https://www.youtube.com/watch?v=MNusZ2C3VFw;License: Standard Youtube License