FUNDAMENTALS OF ENGINEERING THERMODYNAM
8th Edition
ISBN: 2818440116926
Author: MORAN
Publisher: WILEY CONS
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1.9, Problem 41CU
To determine
Whether the statement is true or false “Pressure is an intensive property”.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Hints: Find the closed loop transfer function and then plot the step response for diFerentvalues of K in MATLAB. Show step response plot for different values of K.
Auto Controls
Show solutions and provide matlab code
NO COPIED ANSWERS OR WILL REPORT!!!!
37. The vertical shaft shown in Figure P12-37 is driven at a
speed of 600 rpm with 4.0 hp entering through the bevel
gear. Each of the two chain sprockets delivers 2.0 hp to
the side to drive mixer blades in a chemical reactor vessel.
The bevel gear has a diametral pitch of 5, a pitch diameter
of 9.000 in, a face width of 1.31 in, and a pressure angle
of 20°. Use SAE 4140 OQT 1000 steel for the shaft. See
Chapter 10 for the methods for computing the forces on
the bevel gear.
Figure P12-37: P37-Bevel gear drive with two chain
sprockets
Each problem includes the following details:
■Design the complete shaft, including the specification of
the overall geometry and the consideration of stress con-
centration factors. The analysis would show the minimum
acceptable diameter at each point on the shaft to be safe
from the standpoint of strength.
Homework Problems 12-24, 12-35, and 12-37 from
textbook, done in spreadsheet form. Place drawings of the
load, shear, and bending moment body diagrams…
35. The double-reduction, helical gear reducer shown in
Figure P12-35 transmits 5.0 hp. Shaft 1 is the input,
rotating at 1800 rpm and receiving power directly from an
electric motor through a flexible coupling. Shaft 2 rotates
at 900 rpm. Shaft 3 is the output, rotating at 300 rpm. A
chain sprocket is mounted on the output shaft as shown
and delivers the power upward. The data for the gears
are given in Table 12-5. Each gear has a 1412° normal
pressure angle and a 45° helix angle. The combinations of
left- and right-hand helixes are arranged so that the axial
forces oppose each other on shaft 2 as shown. Use SAE
4140 OQT 1200 for the shafts.
Figure P12-35: P35-Double-reduction helical drive
Each problem includes the following details:
■Design the complete shaft, including the specification of
the overall geometry and the consideration of stress con-
centration factors. The analysis would show the minimum
acceptable diameter at each point on the shaft to be safe
from the standpoint of…
Chapter 1 Solutions
FUNDAMENTALS OF ENGINEERING THERMODYNAM
Ch. 1.9 - Prob. 1ECh. 1.9 - Prob. 2ECh. 1.9 - 3. The driver’s compartment of race cars can reach...Ch. 1.9 - 4. What causes changes in atmospheric pressure?
Ch. 1.9 - 5. Why are passenger airplane cabins normally...Ch. 1.9 - 6. Laura takes an elevator from the tenth floor of...Ch. 1.9 - 7. How do dermatologists remove precancerous skin...Ch. 1.9 - 8. When one walks barefoot from a carpet onto a...Ch. 1.9 - 9. Why does ocean water temperature vary with...Ch. 1.9 - 10. Are the systolic and diastolic pressures...
Ch. 1.9 - 11. How do forehead temperature strips work?
Ch. 1.9 - 12. How does a pressure measurement of 14.7 psig...Ch. 1.9 - 13. What is a nanotubel
Ch. 1.9 - 14. If a system is at steady state, does this mean...Ch. 1.9 - For problems 1-10, match the appropriate...Ch. 1.9 - Prob. 11CUCh. 1.9 - 12. Describe the difference between specific...Ch. 1.9 - 13. A system is said to be at ___________ if none...Ch. 1.9 - 14. A control volume is a system that
(a) always...Ch. 1.9 - 15. What is the objective of an engineering model...Ch. 1.9 - 16. _______________ is pressure with respect to...Ch. 1.9 - 17. A gas contained within a piston–cylinder...Ch. 1.9 - 18. The statement, “When two objects are in...Ch. 1.9 - 19. SI base units include
(a) kilogram (kg), meter...Ch. 1.9 - 20. Explain why the value for gage pressure is...Ch. 1.9 - 21. A system is at steady state if
(a) none of its...Ch. 1.9 - Prob. 22CUCh. 1.9 - 23. Classify items a through g shown on the...Ch. 1.9 - 24. When a system is isolated,
(a) its mass...Ch. 1.9 - 25. The resultant pressure force acting on a body...Ch. 1.9 - 26. The list consisting only of intensive...Ch. 1.9 - 27. Gage pressure indicates the difference between...Ch. 1.9 - 28. Systems can be studied only from a macroscopic...Ch. 1.9 - 29. Kilogram, second, foot, and newton are all...Ch. 1.9 - Prob. 30CUCh. 1.9 - 31. Mass is an intensive property.
Ch. 1.9 - Prob. 32CUCh. 1.9 - 33. Intensive properties may be functions of both...Ch. 1.9 - 34. Devices that measure pressure include...Ch. 1.9 - Prob. 35CUCh. 1.9 - 36. If a system is isolated from its surroundings...Ch. 1.9 - 37. The specific volume is the reciprocal of the...Ch. 1.9 -
Indicate whether the following statements are...Ch. 1.9 - 39. The pound force, lbf, is equal to the pound...Ch. 1.9 - 40. The value of a temperature expressed using the...Ch. 1.9 - Prob. 41CUCh. 1.9 - 42. A closed system always contains the same...Ch. 1.9 - Prob. 43CUCh. 1.9 - 44. A control volume is a special type of closed...Ch. 1.9 - 45. When a closed system undergoes a process...Ch. 1.9 - Prob. 46CUCh. 1.9 - Prob. 47CUCh. 1.9 - 48. A vessel holding 0.5 kg of oxygen (O2)...Ch. 1.9 - Prob. 49CUCh. 1.9 - 50. In local surroundings at standard atmospheric...Ch. 1.9 - Prob. 51CUCh. 1.9 - 52. The Rankine degree is a smaller temperature...Ch. 1.9 - 53. If the value of any property of a system...Ch. 1.9 - Prob. 54CUCh. 1.9 - 55. The composition of a closed system cannot...Ch. 1.9 - 56. Temperature is the property that is the same...Ch. 1.9 - Prob. 57CUCh. 1.9 - 58. The pressure unit psia indicates an absolute...Ch. 1.9 - 1.4 Perform the following unit conversions:
(a) 1...Ch. 1.9 - 1.5 Perform the following unit conversions:
(a)...Ch. 1.9 - 1.6 Which of the following food items weighs...Ch. 1.9 - 1.7 A person whose mass is 150 lb weighs 144.4...Ch. 1.9 - 1.8 The Phoenix with a mass of 350 kg was a...Ch. 1.9 - Prob. 9PCh. 1.9 - 1.10 In severe head-on automobile accidents, a...Ch. 1.9 - Prob. 11PCh. 1.9 - 1.12 A spring compresses in length by 0.14 in, for...Ch. 1.9 - 1.13 At a certain elevation, the pilot of a...Ch. 1.9 - 1.14 Estimate the magnitude of the force, in Ibf,...Ch. 1.9 - 1.15 Determine the upward applied force, in Ibf,...Ch. 1.9 -
1.16 An object is subjected to an applied upward...Ch. 1.9 - 1.17 A communications satellite weighs 4400 N on...Ch. 1.9 - 1.18 Using local acceleration of gravity data from...Ch. 1.9 - 1.19 A town has a 1-million-gallon storage...Ch. 1.9 - 1.20 A closed system consists of 0.5 kmol of...Ch. 1.9 - 1.21 A 2-lb sample of an unknown liquid occupies a...Ch. 1.9 - Prob. 22PCh. 1.9 - 1.23 The specific volume of 5 kg of water vapor at...Ch. 1.9 - Prob. 24PCh. 1.9 - 1.25 As shown in Figure P1.25, a gas is contained...Ch. 1.9 - 1.26 As shown in Fig. P1.26, a vertical...Ch. 1.9 - 1.27 Three kg of gas in a piston-cylinder assembly...Ch. 1.9 - 1.28 A closed system consisting of 4 lb of a gas...Ch. 1.9 - 1.29 A system consists of carbon monoxide (CO) in...Ch. 1.9 - 1.30 Figure P1.30 shows a gas contained in a...Ch. 1.9 - 1.31 A gas contained within a piston-cylinder...Ch. 1.9 - Prob. 32PCh. 1.9 - 1.33 Figure P 1.33 shows a storage tank holding...Ch. 1.9 - 1.34 As shown in Figure PI.34, the exit of a gas...Ch. 1.9 - 1.35 The barometer shown in Fig. P1.35 contains...Ch. 1.9 - Prob. 36PCh. 1.9 - Figure P1.37 shows a tank within a tank, each...Ch. 1.9 - 1.38 As shown in Fig. PI.38, an underwater...Ch. 1.9 - 1.39 Show that a standard atmospheric pressure of...Ch. 1.9 - 1.40 A gas enters a compressor that provides a...Ch. 1.9 - 1.41 As shown in Figure P1.41. air is contained in...Ch. 1.9 - Prob. 42PCh. 1.9 - 1.43 The pressure from water mains located at...Ch. 1.9 - 1.44 Figure P1.44 shows a tank used to collect...Ch. 1.9 - 1.45 If the water pressure at the base of the...Ch. 1.9 - 1.46 As shown in Figure P1.46. an inclined...Ch. 1.9 - 1.47 Figure P1.47 shows a spherical buoy, having a...Ch. 1.9 - 1.48 Because of a break in a buried oil storage...Ch. 1.9 - 1.49 Figure P1.49 shows a closed tank holding air...Ch. 1.9 - 1.50 The 30-year average temperature in Toronto,...Ch. 1.9 - 1.51 Convert the following temperatures from °F to...Ch. 1.9 - Prob. 52PCh. 1.9 - 1.53 A cake recipe specifies an oven temperature...Ch. 1.9 - 1.54 Does the Rankine degree represent a larger or...Ch. 1.9 - 1.55 Figure P1.55 shows a system consisting of a...Ch. 1.9 - What is (a) the lowest naturally occurring...Ch. 1.9 - 1.57 Air temperature rises from a morning low of...Ch. 1.9 - 1.58 For liquid-in-glass thermometers, the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider 0.65 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another rigid tank holding 0.3 kg of CO2 at 300 K, 1 bar. The valve is opened and gases are allowed to mix, achieving an equilibrium state at 290 K. Determine: (a) the volume of each tank, in m³. (b) the final pressure, in bar. (c) the magnitude of the heat transfer to or from the gases during the process, in kJ. (d) the entropy change of each gas and of the overall system, in kJ/K.arrow_forwardBài 1. Cho cơ hệ như hình 1. Hình biểu diễn lược đổ cơ hệ tại vị trí cân bằng tĩnh. Trục tọa độ Oy hướng theo phương chuyển động của vật 1, gốc O đặt tại vị trí cân bằng của vật 1(tức khi lò xo biến dạng tĩnh). Bỏ qua khối lượng của thanh số 3. Vật rắn 2 là pulley 2 tầng đồng chất có bán kính ngoài 21, bán kính trong I, bán kính quán tính đối với trục qua tâm P-1.5, khối lượng m:. Vật rắn 4 là thanh thắng đồng chất có khối lượng m, chiều dài 1. Cho các số liệu: m = 2kg, m= = 5kg, m = 4kg, k=40(N/cm), ! – 0.8(m),r=0.1(m). Điều kiện đầu y; =0.5 cm );j = 10 cm/s) . Giả sử hệ dao động bé, Vật rắn 2 chuyển động lăn không trượt trên mặt phẳng ngang. 1. Viết phương trình chuyển động của hệ. 2. Xác định tần số dao động tự do của hệ. 3. Xác định đáp ứng dao động tự do của hệ. dây dây 1 2r Hình 1 y 3 -2 I k www. -2arrow_forwardHints: Find the closed loop transfer function and then plot the step response for diFerentvalues of K in MATLAB. Show step response plot for different values of K. Auto Controls Show solutions and provide matlab code NO COPIED ANSWERS OR WILL REPORTarrow_forward
- Obtain the response of the system shown below for a parabolic or acceleration input r(t);where Auto Controls Show full solutionarrow_forwardProblem Statement A large plate of insulating material 8 cm thick has in it a 3 cm-diam hole, with axis normal to the surface. The temperature of the surroundings are 1800 K at one side of the plate and 400 K on the other side. Insulating plate D= 3 cm H= 8 cm Considering the sides of the hole to be black, (a) Draw a system of resistors that can be used to solve for the various heat transfer rates. For full credit you must label all "voltages", "currents," and resistances present. (b) Estimate the radiative heat transfer through the hole.arrow_forwardUsing MATLAB, plot the unit-step response curve for the following transfer function and Using MATLAB, obtain the rise time, peak time, maximum overshoot, and settling time. Auto Controls Provide codesarrow_forward
- Use Routh's stability criterion to determine how many roots with positive real partsthe following equations have Auto Controls Show full solutionsarrow_forwardPlot the unit step and unit ramp response curve for the following closed loop transferfunction using MATLAB. Indicate clearly the input and output in your plot Auto Controls provide matlab codearrow_forwardUsing a "for loop" in MATLAB program to obtain the unit-step response of thissystem for the following four cases in a single plot What can you observe from the plot? Auto Controls Provide matlab codearrow_forward
- Problem 2 (40 Points) A particle of mass m is embedded at a distance a from the center of a massless circular disk of radius r. The disk rolls without slipping down a plane inclined at an angle a with the horizontal. A horizontal force of Ễ = −Fxî + Fyĵ resists motion of the disk down the plane by pushing on the disk at the axle that runs through the center of the disk. a) Find the kinetic energy T. (10 points) b) Find the potential energy V. (10 points) c) Write a position vector to the axle at the center of the wheel in terms of x and y. (10 points) d) Using virtual work, find the applied force Q₁ that would go in Lagrange's Equations. DO NOT WRITE OUT OR SOLVE LAGRANGES'S EQUATIONS. (10 points) x r m e 10 g F α HINTS 1) Consider using the STATIONARY red xy frame a reference frame from which to draw vectors 2) The red xy system DOES NOT move. It is stationary. 3) Consider that the disk rolls a distance of re down the ramparrow_forwardDraw a counter balance circuit of a vertical cylinder. using counter balance valve and external load.arrow_forwardplease sketch a stress-strain diagram for a typical structural steel in tension and display all of the important features.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics: Maxwell relations proofs 1 (from ; Author: lseinjr1;https://www.youtube.com/watch?v=MNusZ2C3VFw;License: Standard Youtube License