Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 38AP
(a)
To determine
The hourly rate at which water must evaporate from the skin of a person.
(b)
To determine
The fraction of water provided by fat
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The rate at which a resting person converts food energy is called one’s basal metabolic rate (BMR). Assume that the resulting internal energy leaves a person’s body by radiation and convection of dry air. When you jog, most of the food energy you burn above your BMR becomes internalenergy that would raise your body temperature if it were not eliminated. Assume that evaporation of perspiration is the mechanism for eliminating this energy. Suppose a person is jogging for “maximum fat burning,” converting food energy at the rate 400 kcal/h above his BMR, and putting out energy by work at the rate 60.0 W. Assume that the heat of evaporation of water at body temperature is equal to its heat of vaporization at 100°C. (a) Determine the hourly rate at which water must evaporate from his skin. (b) When you metabolize fat, the hydrogen atoms in the fat molecule are transferred to oxygen to form water. Assume that metabolism of 1.00 g of fat generates 9.00 kcal of energy and produces 1.00 g of…
A worker drives a 0.500 kg spike into a rail tie with a 2.50 kg sledgehammer. The hammer hits the spike with a speed of 65.0 m/s. If one-third of the hammer’s kinetic energy is converted to internal energy of the hammer and the spike, how much does the total internal energy increase?
Because of its metabolic processes, your body
continually emits thermal energy. Suppose that the
air in your bedroom absorbs all of this thermal
energy during the time you sleep at night (8.0
hours). Assume your metabolic rate to be
P = 80 J/s.
Chapter 19 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 19.2 - Prob. 19.1QQCh. 19.3 - Prob. 19.2QQCh. 19.5 - Prob. 19.3QQCh. 19.5 - Characterize the paths in Figure 19.12 as...Ch. 19.6 - Prob. 19.5QQCh. 19 - Prob. 1PCh. 19 - The highest waterfall in the world is the Salto...Ch. 19 - Prob. 3PCh. 19 - The temperature of a silver bar rises by 10.0C...Ch. 19 - You are working in your kitchen preparing lunch...
Ch. 19 - If water with a mass mk at temperature Tk is...Ch. 19 - Prob. 7PCh. 19 - An electric drill with a steel drill bit of mass m...Ch. 19 - Prob. 9PCh. 19 - How much energy is required to change a 40.0-g ice...Ch. 19 - Prob. 11PCh. 19 - Prob. 12PCh. 19 - In an insulated vessel, 250 g of ice at 0C is...Ch. 19 - Prob. 14PCh. 19 - One mole of an ideal gas is warmed slowly so that...Ch. 19 - (a) Determine the work done on a gas that expands...Ch. 19 - A thermodynamic system undergoes a process in...Ch. 19 - Prob. 18PCh. 19 - A 2.00-mol sample of helium gas initially at 300...Ch. 19 - (a) How much work is done on the steam when 1.00...Ch. 19 - A 1.00-kg block of aluminum is warmed at...Ch. 19 - In Figure P19.22, the change in internal energy of...Ch. 19 - Prob. 23PCh. 19 - A concrete slab is 12.0 cm thick and has an area...Ch. 19 - Two lightbulbs have cylindrical filaments much...Ch. 19 - Prob. 26PCh. 19 - (a) Calculate the R-value of a thermal window made...Ch. 19 - Prob. 28PCh. 19 - Gas in a container is at a pressure of 1.50 atm...Ch. 19 - Prob. 30APCh. 19 - You have a particular interest in automobile...Ch. 19 - Prob. 32APCh. 19 - Prob. 33APCh. 19 - Prob. 34APCh. 19 - Review. Following a collision between a large...Ch. 19 - Prob. 36APCh. 19 - An ice-cube tray is filled with 75.0 g of water....Ch. 19 - Prob. 38APCh. 19 - An iron plate is held against an iron wheel so...Ch. 19 - One mole of an ideal gas is contained in a...Ch. 19 - Prob. 41APCh. 19 - Prob. 42APCh. 19 - Prob. 43APCh. 19 - A student measures the following data in a...Ch. 19 - (a) The inside of a hollow cylinder is maintained...Ch. 19 - Prob. 46CPCh. 19 - Prob. 47CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases. (d) The internal energy of the gas remains constant. (e) None of those statements is true.arrow_forward(a) How long will the energy in a 1470kJ (350kcal) cup of yogurt last in a woman doing work at the rate of 150 W with an efficiency of 20.0% (such as in leisurely climbing stairs)? (b) Does the time found in part (a) imply that it is easy to consume more food energy than you can reasonably expect to work off with exercise?arrow_forward(a) If you toss 10 coins, what percent of the time will you get the three most likely macrostates (6 heads and 4 tails, 5 heads and 5 tails, 4 heads and 6 tails)? (b) You can realistically toss 10 coins and count the number of heads and tails about twice a minute. At mat rate, how long will it take on average to get either 10 heads and 0 tails or 0 heads and 10 tails?arrow_forward
- (a) Calculate the rate of heat transfer by radiation from a car radiator at 110C into a 50.0C environment, if the radiator has an emissivity of 0.750 and a 1.20m2 surface area. (b) Is this a significant fraction of the heat transfer by an automobile engine? To answer this, assume a horsepower of 200 hp (1.5 kW) and the efficiency of automobile engines as 25%.arrow_forwardOverall, 80% of the energy used by the body must be eliminated as excess thermal energy and needs to be dissipated. The mechanisms of elimination are radiation, evaporation of sweat (2,430 kJ/kg), evaporation from the lungs (38 kJ/h), conduction, and convection.A person working out in a gym has a metabolic rate of 2,500 kJ/h. His body temperature is 37°C, and the outside temperature 26°C. Assume the skin has an area of 2.0 m2 and emissivity of 0.97. (σ = 5.6696 10-8 W/m2 · K4) (a) At what rate is his excess thermal energy dissipated by radiation? (Enter your answer to at least one decimal place.) W(b) If he eliminates 0.44 kg of perspiration during that hour, at what rate is thermal energy dissipated by evaporation of sweat? (Enter your answer to at least one decimal place.) W(c) At what rate is energy eliminated by evaporation from the lungs? (Enter your answer to at least one decimal place.) W(d) At what rate must the remaining excess energy be eliminated through conduction and…arrow_forwardA 46-kg woman eats a 522 Calorie (522 kcal) jelly doughnut for breakfast. (a) How many joules of energy are the equivalent of one jelly doughnut? 2192.4 X Your response is off by a multiple of ten. J (b) How many steps must the woman climb on a very tall stairway to change the gravitational potential energy of the woman-Earth system by a value equivalent to the food energy in one jelly doughnut? Assume the height of a single stair is 15 cm. 8.67 X Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. stairs (c) If the human body is only 26% efficient in converting chemical potential energy to mechanical energy, how many steps must the woman climb to work off her breakfast? 9 X Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. stairsarrow_forward
- How long does a 65 kg adult need to walk at a rate of 5 km/h in order to burn off all the energy in half slice of pizza. Each slice of pizza contains 1260 kJ of energy. The metabolic power for walking at 5 km/h is 380 W. O 27.6 min O 6.9 min O 55.3 min O 13.8 minarrow_forwardCompressed air can be pumped underground into huge caverns as a form of energy storage. The volume of a cavern is 6.3 x 105 m³, 5 and the pressure of the air in it is 7.4 × 106 Pa. Assume that air is a diatomic ideal gas whose internal energy U is given by U = nRT. If one home uses 30.0 kWh of energy per day, how many homes could this internal energy serve for one day?arrow_forwardA calorimeter is used to measure the energy released when a new exotic rocket fuel and oxidizer are burned. The calorimeter is a closed tank with the fuel and oxidizer, and this tank is located inside a larger tank of water.When the rocket propellant burns, heat from the closed inner tank is transferred to the water, and the rise in temperature of the water is used to determine the amount of energy released. A stirrer is used to stir the water; it does work per second (power) of 4.0 kW. In a one minute period the heat transfer from the inner tank to the water is 2000 kJ and the heat transfer from the water to the surroundings is 30 kJ.a) Determine the increase in the internal energy of the water in Joules.b) What is the final temperature of the water, in degrees C if the tank contains 0.1 m3 of water and was at 300 K initially ? The density of water is 1000 kg/m3 and the heat capacity of water is 1 calorie/gram-Kelvin. One calorie is 4.1855 Joules.arrow_forward
- Overall, 80% of the energy used by the body must be eliminated as excess thermal energy and needs to be dissipated. The mechanisms of elimination are radiation, evaporation of sweat (2,430 kJ/kg), evaporation from the lungs (38 kJ/h), conduction, and convection. A person working out in a gym has a metabolic rate of 2,500 kJ/h. His body temperature is 37°C, and the outside 5.6696 x 10-8 W/m2 · K4) temperature 22°C. Assume the skin has an area of 2.0 m2 and emissivity of 0.97. (o %D (a) At what rate is his excess thermal energy dissipated by radiation? (Enter your answer to at least one decimal place.) 136.7 Your response differs from the correct answer by more than 10%. Double check your calculations. W (b) If he eliminates 0.44 kg of perspiration during that hour, at what rate is thermal energy dissipated by evaporation of sweat? (Enter your answer to at least one decimal place.) W (c) At what rate is energy eliminated by evaporation from the lungs? (Enter your answer to at least one…arrow_forwardA solar hot-water-heating system consists of a hot-water tank and a solar panel. The tank is well insulated and has a time constant of 60 hr. The solar panel generates 2200 Btu/hr during the day, and the tank has a heat capacity of 3°F per thousand Btu. If the water in the tank is initially 105°F and the room temperature outside the tank is 81°F, what will be the temperature in the tank after 10 hr of sunlight? What is U(t), the rate of temperature change due to the solar heating panel? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. O A. U(t)= °F/hr OB. U(t) is unknown. xample Get more help Clear all Check answerarrow_forwardImagine that a hypothetical life form is discovered on our moon and transported to Earth. On a hot day, this life form begins to sweat, and it is determined that the heat of vaporization of its sweat is 167 cal/g . The scientist observing the extraterrestrial life form also begins to sweat. The heat of vaporization of the scientist's sweat is 580 cal/g at the skin's surface. If both the extraterrestrial life form and the scientist lose 568 g of sweat over the course of one hour, calculate the heat lost by each body from the vaporization of sweatarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY