EBK PHYSICS FOR SCIENTISTS & ENGINEERS
5th Edition
ISBN: 9780134296074
Author: GIANCOLI
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 32Q
To determine
The reason for which the metal feels hotter than the wood when picked up.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
On a cold day, you grab a piece of metal and a fallen tree limb, both with bare hands. Both have been lying outside for a long time and are at the same temperature. The metal feels colder than the tree limb. Why?
What is the role of “loose” electrons in heat conductors?
(A) Loose electrons move quickly away from hot locations, making it impossible for energy to move and making the object a good insulator.
(B) Loose electrons absorb energy, giving materials a high specific heat capacity.
(C) Loose electrons vibrate and emit radiation that carries energy through the material at the speed of light.
(D) Loose electrons transfer energy rapidly through a solid.
For objects at thermal equilibrium, Thermal energy between them does not exist.
TRUE OR FALSE ? Explain why.
Chapter 19 Solutions
EBK PHYSICS FOR SCIENTISTS & ENGINEERS
Ch. 19.2 - Return to the Chapter-Opening Question, page 496,...Ch. 19.5 - Prob. 1BECh. 19.5 - Prob. 1CECh. 19.5 - How much more ice at 10C would be needed in...Ch. 19.6 - What would be the internal energy change in...Ch. 19.7 - Is the work done by the gas in process ADB of Fig....Ch. 19.7 - In Example 1910, if the heat lost from the gas in...Ch. 19.10 - Prob. 1HECh. 19.10 - Fanning yourself on a hot day cools you by (a)...Ch. 19 - What happens to the work done on a jar of orange...
Ch. 19 - Prob. 2QCh. 19 - Prob. 3QCh. 19 - Prob. 4QCh. 19 - Prob. 5QCh. 19 - Why does water in a canteen stay cooler if the...Ch. 19 - Explain why burns caused by steam at 100C on the...Ch. 19 - Prob. 8QCh. 19 - Will potatoes cook faster if the water is boiling...Ch. 19 - Prob. 10QCh. 19 - Use the conservation of energy to explain why the...Ch. 19 - Explorers on failed Arctic expeditions have...Ch. 19 - Why is wet sand at the beach cooler to walk on...Ch. 19 - When hot-air furnaces are used to heat a house,...Ch. 19 - Prob. 15QCh. 19 - An ideal monatomic gas is allowed to expand slowly...Ch. 19 - Ceiling fans are sometimes reversible, so that...Ch. 19 - Goose down sleeping bags and parkas are often...Ch. 19 - Microprocessor chips nowadays have a heat sink...Ch. 19 - Sea breezes are often encountered on sunny days at...Ch. 19 - The Earth cools off at night much more quickly...Ch. 19 - Explain why air-temperature readings are always...Ch. 19 - A premature baby in an incubator can be...Ch. 19 - A 22C day is warm, while a swimming pool at 22C...Ch. 19 - Prob. 25QCh. 19 - Prob. 26QCh. 19 - Prob. 27QCh. 19 - Prob. 28QCh. 19 - Prob. 29QCh. 19 - Prob. 30QCh. 19 - Prob. 31QCh. 19 - Prob. 32QCh. 19 - An emergency blanket is a thin shiny...Ch. 19 - Explain why cities situated by the ocean tend to...Ch. 19 - Prob. 1MCQCh. 19 - Prob. 2MCQCh. 19 - Prob. 3MCQCh. 19 - Prob. 4MCQCh. 19 - Prob. 5MCQCh. 19 - Prob. 6MCQCh. 19 - Prob. 7MCQCh. 19 - Prob. 8MCQCh. 19 - Prob. 9MCQCh. 19 - Prob. 10MCQCh. 19 - Prob. 11MCQCh. 19 - Prob. 12MCQCh. 19 - Prob. 13MCQCh. 19 - Prob. 1PCh. 19 - Prob. 2PCh. 19 - Prob. 3PCh. 19 - (II) A British thermal unit (Btu) is a unit of...Ch. 19 - Prob. 5PCh. 19 - Prob. 6PCh. 19 - Prob. 7PCh. 19 - (I) An automobile cooling system holds 18 L of...Ch. 19 - Prob. 9PCh. 19 - Prob. 10PCh. 19 - Prob. 11PCh. 19 - (II) When a 290-g piece of iron at 180C is placed...Ch. 19 - Prob. 13PCh. 19 - Prob. 14PCh. 19 - Prob. 15PCh. 19 - (II) The heat capacity. C, of an object is defined...Ch. 19 - (II) The 1.20-kg head of a hammer has a speed of...Ch. 19 - Prob. 18PCh. 19 - Prob. 19PCh. 19 - Prob. 20PCh. 19 - Prob. 21PCh. 19 - Prob. 22PCh. 19 - Prob. 23PCh. 19 - Prob. 24PCh. 19 - (II) High-altitude mountain climbers do not eat...Ch. 19 - Prob. 26PCh. 19 - Prob. 27PCh. 19 - Prob. 28PCh. 19 - Prob. 29PCh. 19 - Prob. 30PCh. 19 - Prob. 31PCh. 19 - Prob. 32PCh. 19 - Prob. 33PCh. 19 - Prob. 34PCh. 19 - Prob. 35PCh. 19 - Prob. 36PCh. 19 - Prob. 37PCh. 19 - Prob. 38PCh. 19 - (II) Consider the following two-step process. Heat...Ch. 19 - Prob. 40PCh. 19 - Prob. 41PCh. 19 - Prob. 42PCh. 19 - Prob. 43PCh. 19 - Prob. 44PCh. 19 - (III) Determine the work done by 1.00 mol of a van...Ch. 19 - Prob. 46PCh. 19 - (III) In the process of taking a gas from state a...Ch. 19 - (III) Suppose a gas is taken clockwise around the...Ch. 19 - Prob. 49PCh. 19 - Prob. 50PCh. 19 - Prob. 51PCh. 19 - Prob. 52PCh. 19 - What gas is it? (II) Show that the work done by n...Ch. 19 - Prob. 54PCh. 19 - Prob. 55PCh. 19 - Prob. 56PCh. 19 - (I) A 1.00-mol sample of an ideal diatomic gas,...Ch. 19 - (II) Show, using Eqs. 196 and 1915, that the work...Ch. 19 - (III) A 3.65-mol sample of an ideal diatomic gas...Ch. 19 - Prob. 61PCh. 19 - (III) A 1.00-mol sample of an ideal monatomic gas,...Ch. 19 - (III) Consider a parcel of air moving to a...Ch. 19 - Prob. 64PCh. 19 - Prob. 65PCh. 19 - Prob. 66PCh. 19 - Prob. 67PCh. 19 - Prob. 68PCh. 19 - Prob. 69PCh. 19 - Prob. 70PCh. 19 - Prob. 71PCh. 19 - (III) A cylindrical pipe has inner radius R1 and...Ch. 19 - Prob. 73PCh. 19 - Prob. 74GPCh. 19 - Prob. 75GPCh. 19 - Prob. 76GPCh. 19 - Prob. 77GPCh. 19 - Prob. 78GPCh. 19 - Prob. 79GPCh. 19 - Prob. 80GPCh. 19 - Prob. 81GPCh. 19 - Prob. 82GPCh. 19 - Prob. 83GPCh. 19 - Prob. 84GPCh. 19 - Prob. 85GPCh. 19 - Prob. 86GPCh. 19 - Prob. 87GPCh. 19 - The temperature of the glass surface of a 75-W...Ch. 19 - Prob. 90GPCh. 19 - A scuba diver releases a 3.60-cm-diameter...Ch. 19 - Suppose 3.0 mol of neon (an ideal monatomic gas)...Ch. 19 - Prob. 93GPCh. 19 - A diesel engine accomplishes ignition without a...Ch. 19 - Prob. 95GPCh. 19 - Prob. 96GPCh. 19 - Prob. 97GPCh. 19 - Prob. 98GPCh. 19 - Prob. 99GPCh. 19 - Prob. 100GPCh. 19 - Prob. 101GPCh. 19 - Prob. 102GPCh. 19 - Prob. 103GPCh. 19 - Prob. 104GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Beryllium has roughly one-half the specific heat of water (H2O). Rank the quantities of energy input required to produce the following changes from the largest to the smallest. In your ranking, note any cases of equality, (a) raising the temperature of 1 kg of H2O from 20C to 26C (b) raising the temperature of 2 kg of H2O from 20C to 23C (c) raising the temperature of 2 kg of H2O from 1C to 4C (d) raising the temperature of 2 kg of beryllium from 1C to 2C (e) raising the temperature of 2 kg of H2O from -1C to 2Carrow_forwardA 1.00MT bomb exploded a few kilometers above the ground deposits 25.0% of its energy into radiant heat. (a) Find the calories per cm2 at a distance of 10.0 km by assuming a uniform distribution over a spherical surface at that radius. (b) If this heat falls on a person’s body, what temperature increase does it cause in the affected tissue, assuming it is absorbed in a layer 1.00cm deep?arrow_forwardWhen the metal ring and metal sphere in Figure CQ10.14 are both at room temperature, the sphere can barely be passed through the ring, (a) After the sphere is warmed in a flame, it cannot be passed through the ring. Explain, (b) What if the ring is warmed and the sphere is left at room temperature? Does the sphere pass through the ring? Figure CQ10.14arrow_forward
- When the metal ring and metal sphere in Figure CQ19.8 are both at room temperature, the sphere can barely be passed through the ring, (a) After the sphere is warmed in a flame, it cannot be passed through the ring. Explain, (b) What If? What if the ring is warmed and the sphere is left at room temperature? Does the sphere pass through the ring?arrow_forwardAt our distance from the Sun, the intensity of solar radiation is 1 370 W/m2. The temperature of the Earth is affected by the greenhouse effect of the atmosphere. This phenomenon describes the effect of absorption of infrared light emitted by the surface so as to make the surface temperature of the Earth higher than if it were airless. For comparison, consider a spherical object of radius r with no atmosphere at the same distance from the Sun as the Earth. Assume its emissivity is the same for all kinds of electromagnetic waves and its temperature is uniform over its surface. (a) Explain why the projected area over which it absorbs sunlight is r2 and the surface area over which it radiates is 4r2. (b) Compute its steady-state temperature. Is it chilly?arrow_forward(a) A shirtless rider under a circus tent feels the heat radiating from the sunlit portion of the tent. Calculate the temperature of the tent canvas based on the following information: The shirtless rider’s skin temperature is 34.0C and has an emissivity of 0.970. The exposed area of skin is 0.400m2. He receives radiation at the rate of 20.0 W—half what you would calculate if the entire region behind him was hot. The rest of the surroundings are at 34.0C. (b) Discuss how this situation would change if the sun lit side of the tent was nearly pure white and if the rider was covered by a white tunic.arrow_forward
- The thermal conductivities of human tissues vary greatly. Fat and skin have conductivities of about 0.20 W/m K and 0.020 W/m K, respectively, while other tissues inside the body have conductivities of about 0.50 W/m K. Assume that between the core region of the body and the skin sin face lies a skin layer of 1.0 mm, fat layer of 0.50 cm, and 3.2 cm of other tissues. (a) Find the R-factor for each of these layers, and the equivalent R-factor for all layers taken together, retaining two digits. (b) Find the rate of energy loss when the core temperature is 37C and the exterior temperature is 0C. Assume that both a protective layer of clothing and an insulating layer of unmoving air a absent, and a body area of 2.0 m2.arrow_forwardIn a showdown on the streets of Laredo, the good guy drops a 5.00-g silver bullet at a temperature of 20.0C into a 100-cm3 cup of water at 90.0C. Simultaneously, the bad guy drops a 5.00-g copper bullet at the same initial temperature into an identical cup of water. Which one ends the showdown with the coolest cup of water in the West? Neglect any energy transfer into or away from the container.arrow_forwardA high-end gas stove usually has at least one burner rated at 14 000 Btu/h. (a) If you place a 0.25-kg aluminum pot containing 2.0 liters of water at 20.C on this burner, how long will it take to bring the water to a boil, assuming all the heat from the burner goes into the pot? (b) Once boiling begins how much time is required to boil all the water out of the pot?arrow_forward
- Suppose a person is covered head to foot by wool clothing with average thickness of 2.00 cm and is transferring energy by conduction through the clothing at the rate of 50.0 W. What is the temperature difference across the clothing, given the surface area is 1.40 m2?arrow_forwardAssume you are measuring the specific heat of a sample of originally hot metal by using a calorimeter containing water. Because your calorimeter is not perfectly insulating, energy can transfer by heat between the contents of the calorimeter and the room. To obtain the most accurate result for the specific heat of the metal, you should use water with which initial temperature? (a) slightly lower than room temperature (b) the same as room temperature (c) slightly higher than room temperature (d) whatever you like because the initial temperature makes no differencearrow_forwardA common material for cushioning objects in packages is made by trapping bubbles of air between sheets of plastic. Is this material more effective at keeping the contents of the package from moving around inside the package on (a) a hot day, (b) a cold day, or (c) either hot or cold days?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning