
Concept explainers
(a)
The analysis model that describes the horizontal motion of the protons above the plane.
(a)

Answer to Problem 32P
The particle under constant velocity describes the horizontal motion of the protons above the plane.
Explanation of Solution
Figure 1 represents a proton is projected with an angle of
Write the expression for horizontal component of motion of the proton.
Here,
There is no force acting on the proton in the horizontal direction, thus the particle under constant velocity describes the horizontal motion of the protons above the plane.
Conclusion:
Therefore, the particle under constant velocity describes the horizontal motion of the protons above the plane
(b)
The analysis model that describes the vertical motion of the protons above the plane.
(b)

Answer to Problem 32P
The particle under constant acceleration describes the vertical motion of the protons above the plane.
Explanation of Solution
Write the expression for vertical component of motion of the proton.
Here,
From the above equation it is clear that the vertical component of the velocity depends only on acceleration due to gravity. The acceleration due to gravity has a constant value throughout the motion, thus the particle under constant acceleration describes the vertical motion of the protons above the plane.
Conclusion:
Therefore, the particle under constant acceleration describes the vertical motion of the protons above the plane.
(c)
Whether the Equation 3.16 be applicable to the protons.
(c)

Answer to Problem 32P
Yes, the Equation 3.16 is applicable to the protons. The proton moves in a parabolic path.
Explanation of Solution
Given that the electric field is
The vertical acceleration caused by the constant electric force
This vertical acceleration makes the proton to move in a parabolic path, this is similar to a projectile in a gravitational field.
Conclusion:
Therefore, the Equation 3.16 is applicable to the protons. The proton moves in a parabolic path.
(d)
The expression for range
(d)

Answer to Problem 32P
The expression for range
Explanation of Solution
Write the expression for vertical acceleration.
Here,
Write the expression for range from Equation 3.16.
Here,
Since the vertical acceleration is greater than acceleration due to gravity, consider vertical acceleration in the place of acceleration due to gravity.
Apply the above condition in equation (II)
Conclusion:
Substitute
Therefore, the expression for range
(e)
The two possible values of the angle
(e)

Answer to Problem 32P
The two possible values of the angle
Explanation of Solution
From subpart (d) the expression for range
Given that the range is
Conclusion:
Substitute
The other value of
Therefore, the two possible values of the angle
(f)
The time interval during which the proton is above the plane for the two possible values of
(f)

Answer to Problem 32P
The time interval during which the proton is above the plane for the two possible values of
Explanation of Solution
Write the expression for time interval.
Here,
Conclusion:
Substitute
Substitute
Therefore, the time interval during which the proton is above the plane for the two possible values of
Want to see more full solutions like this?
Chapter 19 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- no ai pleasearrow_forwardA block of mass m₁ = 1.85 kg and a block of mass m₂ is 0.360 for both blocks. = m M, R m2 Ꮎ 5.90 kg are connected by a massless string over a pulley in the shape of a solid disk having a mass of M = 10.0 kg. The fixed, wedge-shaped ramp makes an angle of 0 = 30.0° as shown in the figure. The coefficient of kinetic friction (a) Determine the acceleration of the two blocks. (Enter the magnitude of the acceleration.) x m/s² (b) Determine the tensions in the string on both sides of the pulley. left of the pulley × N right of the pulley X N Enter a number.arrow_forwardWhat is the error determined by the 2/3 rule?arrow_forward
- Your colleague gives you a sample that are supposed to consist of Pt-Ni nanoparticles, TiO2 nanorod arrays, and SiO2 monolith plates (see right panel schematic). The bimetallic Pt-Ni nanoparticles are expected to decorate on the side surfaces of the aligned TiO2 nanorod arrays. These aligned TiO2 nanoarrays grew on the flat SiO2 monolith. Let's assume that the sizes of the Pt-Ni nanoparticles are > 10 nm. We further assume that you have access to a modern SEM that can produce a probe size as small as 1 nm with a current as high as 1 nA. You are not expected to damage/destroy the sample. Hint: keep your answers concise and to the point. TiO₂ Nanorods SiO, monolith a) What do you plan to do if your colleague wants to know if the Pt and Ni formed uniform alloy nanoparticles? (5 points) b) If your colleague wants to know the spatial distribution of the PtNi nanoparticles with respect to the TiO2 nanoarrays, how do you accomplish such a goal? (5 points) c) Based on the experimental results…arrow_forwardFind the current in 5.00 and 7.00 Ω resistors. Please explain all reasoningarrow_forwardFind the amplitude, wavelength, period, and the speed of the wave.arrow_forward
- A long solenoid of length 6.70 × 10-2 m and cross-sectional area 5.0 × 10-5 m² contains 6500 turns per meter of length. Determine the emf induced in the solenoid when the current in the solenoid changes from 0 to 1.5 A during the time interval from 0 to 0.20 s. Number Unitsarrow_forwardA coat hanger of mass m = 0.255 kg oscillates on a peg as a physical pendulum as shown in the figure below. The distance from the pivot to the center of mass of the coat hanger is d = 18.0 cm and the period of the motion is T = 1.37 s. Find the moment of inertia of the coat hanger about the pivot.arrow_forwardReview Conceptual Example 3 and the drawing as an aid in solving this problem. A conducting rod slides down between two frictionless vertical copper tracks at a constant speed of 3.9 m/s perpendicular to a 0.49-T magnetic field. The resistance of th rod and tracks is negligible. The rod maintains electrical contact with the tracks at all times and has a length of 1.4 m. A 1.1-Q resistor is attached between the tops of the tracks. (a) What is the mass of the rod? (b) Find the change in the gravitational potentia energy that occurs in a time of 0.26 s. (c) Find the electrical energy dissipated in the resistor in 0.26 s.arrow_forward
- A camera lens used for taking close-up photographs has a focal length of 21.5 mm. The farthest it can be placed from the film is 34.0 mm. (a) What is the closest object (in mm) that can be photographed? 58.5 mm (b) What is the magnification of this closest object? 0.581 × ×arrow_forwardGiven two particles with Q = 4.40-µC charges as shown in the figure below and a particle with charge q = 1.40 ✕ 10−18 C at the origin. (Note: Assume a reference level of potential V = 0 at r = ∞.) Three positively charged particles lie along the x-axis of the x y coordinate plane.Charge q is at the origin.Charge Q is at (0.800 m, 0).Another charge Q is at (−0.800 m, 0).(a)What is the net force (in N) exerted by the two 4.40-µC charges on the charge q? (Enter the magnitude.) N(b)What is the electric field (in N/C) at the origin due to the two 4.40-µC particles? (Enter the magnitude.) N/C(c)What is the electrical potential (in kV) at the origin due to the two 4.40-µC particles? kV(d)What If? What would be the change in electric potential energy (in J) of the system if the charge q were moved a distance d = 0.400 m closer to either of the 4.40-µC particles?arrow_forward(a) Where does an object need to be placed relative to a microscope in cm from the objective lens for its 0.500 cm focal length objective to produce a magnification of -25? (Give your answer to at least three decimal places.) 0.42 × cm (b) Where should the 5.00 cm focal length eyepiece be placed in cm behind the objective lens to produce a further fourfold (4.00) magnification? 15 × cmarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





