Concept explainers
(a)
Interpretation: Half-life of copper-
Concept introduction: A process through which, an unstable nuclide loses its energy due to excess of protons or neutrons is known as radioactive decay. The cause of instability of a nuclide is its inefficiency in holding the nucleus together. Decay constant is the quantity that expresses the rate of decrease of number of atoms of a radioactive element per second. Half-life of radioactive sample is defined as the time required for the number of nuclides to reach half of the original value.
The decay constant can be calculated by the formula given below.
The time of decay can be calculated by the formula given below,
To determine: The value of decay constant in
(b)
Interpretation: Half-life of copper-
Concept introduction: A process through which, an unstable nuclide loses its energy due to excess of protons or neutrons is known as radioactive decay. The cause of instability of a nuclide is its inefficiency in holding the nucleus together. Decay constant is the quantity that expresses the rate of decrease of number of atoms of a radioactive element per second. Half-life of radioactive sample is defined as the time required for the number of nuclides to reach half of the original value.
The decay constant can be calculated by the formula given below.
The time of decay can be calculated by the formula given below,
To determine: The number of decay events in the first second.
(c)
Interpretation: Time in which one have to do the experiment of measuring radioactivity of copper-
Concept introduction: A process through which, an unstable nuclide loses its energy due to excess of protons or neutrons is known as radioactive decay. The cause of instability of a nuclide is its inefficiency in holding the nucleus together. Decay constant is the quantity that expresses the rate of decrease of number of atoms of a radioactive element per second. Half-life of radioactive sample is defined as the time required for the number of nuclides to reach half of the original value.
The decay constant can be calculated by the formula given below.
The time of decay can be calculated by the formula given below,
To determine: The time for which the given experiment is to be done so that the radioactivity does not fall below
Trending nowThis is a popular solution!
Chapter 19 Solutions
OWLv2 with MindTap Reader, 4 terms (24 months) Printed Access Card for Zumdahl/Zumdahl's Chemistry, 9th
- A laser emits a line at 632.8 nm. If the cavity is 12 cm long, how many modes oscillate in the cavity? How long does it take for the radiation to travel the entire cavity? What is the frequency difference between 2 consecutive modes?(refractive index of the medium n = 1).arrow_forwardThe number of microstates corresponding to each macrostate is given by N. The dominant macrostate or configuration of a system is the macrostate with the greatest weight W. Are both statements correct?arrow_forwardFor the single step reaction: A + B → 2C + 25 kJ If the activation energy for this reaction is 35.8 kJ, sketch an energy vs. reaction coordinate diagram for this reaction. Be sure to label the following on your diagram: each of the axes, reactant compounds and product compounds, enthalpy of reaction, activation energy of the forward reaction with the correct value, activation energy of the backwards reaction with the correct value and the transition state. In the same sketch you drew, after the addition of a homogeneous catalyst, show how it would change the graph. Label any new line "catalyst" and label any new activation energy.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning