(a)
Interpretation:
Energy possessed by a mole of photon should be calculated and expressed with the units of kilojoules and kilocalories.
Concept introduction:
A photon can be introduced as a piece of energy which has no mass. The relationship between the energy of a photon and its wavelength can be expressed with the following Planck-Einstein equation represented as follows:
Answer to Problem 23P
Explanation of Solution
A photon can be introduced as a piece of energy which has no mass. The speed of a photon is equal to the
Here,
Since, the frequency of the photon is not given, the equation of
Using
Substituting
=
Since,
Energy of a photon in kilojoules,
Since,
Number of photons in a mole = Avogadro number of photons
Therefore, energy of mole of photon in kiloJoules,
Energy of a photon in kilojoules
Energy of a photon in kilocalories,
Number of photons in a mole = Avogadro number of photons
Therefore, Energy of moles of photon in kilocalories,
Einstein is also a unit of energy.
Einstein
Thus, energy of mole of photon in kilo Joules =
Energy of moles of photon in kilocalories =
(b)
Interpretation:
The maximum increase in the redox potential induced by 1000 nm photon needs to be determined.
Concept introduction:
One electron volt is the energy need to move an electron between one-volt potential difference.
One electron volt
Answer to Problem 23P
Explanation of Solution
The maximum increase in a redox potential can be calculated as follows:
Putting the values,
(c)
Interpretation:
Number of photons need to overcome the Gibbs free energy should be calculated.
Concept introduction:
In a simple definition, Gibbs free energy of a reaction is the energy associated with that particular
Phosphorylation is the conversion of ATP from ADP.
Answer to Problem 23P
Explanation of Solution
Phosphorylation is the conversion of ATP from ADP.
ATP- Adenosine triphosphate
ADP-Adenosine diphosphate
Therefore,
Energy needed for the phosphorylation reaction = Energy needed to convert a mole of ADP to ATP =
Number of ADP in one mole of ADP =
Energy needed to convert one ADP to ATP,
=
Maximum energy that one
Minimum number of
Putting the values,
Want to see more full solutions like this?
Chapter 19 Solutions
Biochemistry (Looseleaf)
- Draw the predominant form of glutamic acid at pH = 8.4. The pKa of the side chain is 4.1. Include proper stereochemistry. HO H2N OH pH = 8.4arrow_forwardHow would I draw this?arrow_forwardCalculate the standard change in Gibbs free energy, AGrxn, for the given reaction at 25.0 °C. Consult the table of thermodynamic properties for standard Gibbs free energy of formation values. NH,Cl(s) →NH; (aq) + C1 (aq) AGrxn -7.67 Correct Answer Determine the concentration of NH+ (aq) if the change in Gibbs free energy, AGrxn, for the reaction is -9.27 kJ/mol. 6.49 [NH+] Incorrect Answer kJ/mol Marrow_forward
- What are some topics of interest that neurotoxicologists study? For example, toxin-induced seizures, brain death, and such along those lines?arrow_forwardCould you help me with the explanation of the answer to exercise 15, chapter 1 of Lehinger Question Nombramiento de estereoisómeros con dos carbonos quirales utilizando el sistema RS(R,R)El isómero del metilfenidato (Ritalin) se utiliza para tratar el trastorno por déficit de atención con hiperactividad (TDAH).(S,S)El isómero es un antidepresivo. Identifique los dos carbonos quirales en la siguiente estructura. ¿Es este el(R,R)o el(S,S)¿isómero? Dibuja el otro isómero. Nombramiento de estereoisómeros con dos carbonos quirales utilizando el sistema RS(R,R)El isómero del metilfenidato (Ritalin) se utiliza para tratar el trastorno por déficit de atención con hiperactividad (TDAH).(S,S)El isómero es un antidepresivo.arrow_forwardThe reaction A+B → C + D AG°' = -7.3 kcal/mol can be coupled with which of the following unfavorable reactions to drive it forward? A. EFG+HAG° = 5.6 kcal/mol. B. J+KZ+A AG° = 2.3 kcal/mol. C. P+RY+DAG° = 8.2 kcal/mol. D. C + T → V + W AG°' = -5.9 kcal/mol. E. AN→ Q+KAG°' = 4.3 kcal/mol.arrow_forward
- What would be the toxicological endpoints for neurotoxicity?arrow_forwardWhat are "endpoints" in toxicology exactly? Please give an intuitive easy explanationarrow_forwardFura-2 Fluorescence (Arbitrary Unit) 4500 4000 3500 3000 2500 2000 1500 1000 500 [Ca2+]=2970nM, 25°C [Ca2+] 2970nM, 4°C [Ca2+]=0.9nM, 25°C [Ca2+] = 0.9nM, 4°C 0 260 280 300 340 360 380 400 420 440 Wavelength (nm) ← < The figure on the LHS shows the excitation spectra of Fura-2 (Em = 510 nm) in 2 solutions with two different Ca2+ ion concentration as indicated. Except for temperature, the setting for excitation & signal acquisition was identical.< ப a) The unit in Y-axis is arbitrary (unspecified). Why? < < b) Compare & contrast the excitation wavelength of the Isosbestic Point of Fura-2 at 25 °C & 4 °C. Give a possible reason for the discrepancy. < c) The fluorescence intensity at 25 °C & 4 °C are different. Explain why with the concept of electronic configuration. <arrow_forward
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage Learning