UNIVERSE (LOOSELEAF):STARS+GALAXIES
6th Edition
ISBN: 9781319115043
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 21Q
To determine
To explain:
Redgiant stars appear more pronounced in composites of infraredimages and visible-light images.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For each statement concerning main sequence stars, select T True, F False, G Greater than, L Less than, or E Equal to.
A) The surface temperature of a O type star is .... than a K type star.
B) On the main sequence, the mass of a O type star is .... than a F type star.
C) On the main sequence, a M type star's life is .... than a G type star.
D) The surface temperature of our Sun is .... than the surface temperature of Sirius.
E) When stars start hydrogen burning, thier mass determines where they are on the main sequence.
F) Based on the relative lifes of M and G type stars we expect the number of M stars to be .... than the number of G type stars.
A star with spectral type A0 has a surface temperature of 9600 K and a radius of 2.2 RSun. How many times more luminous is this star than the Sun? (if it is less luminous enter a number less than one)
This star has a mass of 3.3 MSun. Using the simple approximation that we made in class, what is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr.
Compare this to the lifetime of a A0 star listed in Table 22.1 (computed using a more sophisticated approach). Is the value you calculated in the previous problem longer or shorter than what is reported in the table? (L for longer, S for shorter) (You only get one try at this problem.)
We will take a moment to compare how brightly a white dwarf star shines compared to a red giant star. For the sake of this probler, lets assume a white dwarf has a
temperature around 10,000 K and a red giant has a temperature around 5,000 K. As for their stellar radii, the white dwarf has a radius about 1/100th that of the Sun
and a red giant has a radius around 100 times larger than the Sun.
With this in mind, how does the luminosity of a red giant star compare to that of a white dwarf (Hint: do not try to enter all of these numbers into the luminosity
equation fit won't go well); instead, remember that you are only interested in the ratio between the two, so all common units and components can be divided out)?
Please enter your answer in terms of the luminosity of the red giant divided by the luminosity of the white dwarf and round to two significant figures.
Also, please avoid using commas in your answer.
A Moving to another question will save this response.
Question 1 of 32 >»
31…
Chapter 19 Solutions
UNIVERSE (LOOSELEAF):STARS+GALAXIES
Ch. 19 - Prob. 1QCh. 19 - Prob. 2QCh. 19 - Prob. 3QCh. 19 - Prob. 4QCh. 19 - Prob. 5QCh. 19 - Prob. 6QCh. 19 - Prob. 7QCh. 19 - Prob. 8QCh. 19 - Prob. 9QCh. 19 - Prob. 10Q
Ch. 19 - Prob. 11QCh. 19 - Prob. 12QCh. 19 - Prob. 13QCh. 19 - Prob. 14QCh. 19 - Prob. 15QCh. 19 - Prob. 16QCh. 19 - Prob. 17QCh. 19 - Prob. 18QCh. 19 - Prob. 19QCh. 19 - Prob. 20QCh. 19 - Prob. 21QCh. 19 - Prob. 22QCh. 19 - Prob. 23QCh. 19 - Prob. 24QCh. 19 - Prob. 25QCh. 19 - Prob. 26QCh. 19 - Prob. 27QCh. 19 - Prob. 28QCh. 19 - Prob. 29QCh. 19 - Prob. 30QCh. 19 - Prob. 31QCh. 19 - Prob. 32QCh. 19 - Prob. 33QCh. 19 - Prob. 34QCh. 19 - Prob. 35QCh. 19 - Prob. 36QCh. 19 - Prob. 37QCh. 19 - Prob. 38QCh. 19 - Prob. 39QCh. 19 - Prob. 40QCh. 19 - Prob. 41QCh. 19 - Prob. 42QCh. 19 - Prob. 43QCh. 19 - Prob. 44QCh. 19 - Prob. 45QCh. 19 - Prob. 46QCh. 19 - Prob. 47QCh. 19 - Prob. 48QCh. 19 - Prob. 49QCh. 19 - Prob. 50QCh. 19 - Prob. 51QCh. 19 - Prob. 52QCh. 19 - Prob. 53Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Describe the evolution of a star with a mass similar to that of the Sun, from the protostar stage to the time it first becomes a red giant. Give the description in words and then sketch the evolution on an HR diagram.arrow_forwardAccording to the text, a star must be hotter than about 25,000 K to produce an H II region. Both the hottest white dwarfs and main-sequence O stars have temperatures hotter than 25,000 K. Which type of star can ionize more hydrogen? Why?arrow_forwardHow do stars typically “move” through the main sequence band on an HR diagram? Why?arrow_forward
- You can use the equation in Exercise 22.34 to estimate the approximate ages of the clusters in Figure 22.10, Figure 22.12, and Figure 22.13. Use the information in the figures to determine the luminosity of the most massive star still on the main sequence. Now use the data in Table 18.3 to estimate the mass of this star. Then calculate the age of the cluster. This method is similar to the procedure used by astronomers to obtain the ages of clusters, except that they use actual data and model calculations rather than simply making estimates from a drawing. How do your ages compare with the ages in the text? Figure 22.10 NGC 2264 HR Diagram. Compare this HR diagram to that in Figure 22.8; although the points scatter a bit more here, the theoretical and observational diagrams are remarkably, and satisfyingly, similar. Figure 22.12 Cluster M41. (a) Cluster M41 is older than NGC 2264 (see Figure 22.10) and contains several red giants. Some of its more massive stars are no longer close to the zero-age main sequence (red line). (b) This ground-based photograph shows the open cluster M41. Note that it contains several orange-color stars. These are stars that have exhausted hydrogen in their centers, and have swelled up to become red giants. (credit b: modification of work by NOAO/AURA/NSF) Figure 22.13 HR Diagram for an Older Cluster. We see the HR diagram for a hypothetical older cluster at an age of 4.24 billion years. Note that most of the stars on the upper part of the main sequence have turned off toward the red-giant region. And the most massive stars in the cluster have already died and are no longer on the diagram. Characteristics of Main-Sequence Starsarrow_forwardIn the HR diagrams for some young clusters, stars of both very low and very high luminosity are off to the right of the main sequence, whereas those of intermediate luminosity are on the main sequence. Can you offer an explanation for that? Sketch an HR diagram for such a cluster.arrow_forwardThe ring around SN 1987A (Figure 23.12) started interacting with material propelled by the shockwave from the supernova beginning in 1997 (10 years after the explosion). The radius of the ring is approximately 0.75 light-year from the supernova location. How fast is the supernova material moving, assume a constant rate of motion in km/s? Figure 23.12 Ring around Supernova 1987A. These two images show a ring of gas expelled by a red giant star about 30,000 years before the star exploded and was observed as Supernova 1987A. The supernova, which has been artificially dimmed, is located at the center of the ring. The left-hand image was taken in 1997 and the right-hand image in 2003. Note that the number of bright spots has increased from 1 to more than 15 over this time interval. These spots occur where high-speed gas ejected by the supernova and moving at millions of miles per hour has reached the ring and blasted into it. The collision has heated the gas in the ring and caused it to glow more brightly. The fact that we see individual spots suggests that material ejected by the supernova is first hitting narrow, inward-projecting columns of gas in the clumpy ring. The hot spots are the first signs of a dramatic and violent collision between the new and old material that will continue over the next few years. By studying these bright spots, astronomers can determine the composition of the ring and hence learn about the nuclear processes that build heavy elements inside massive stars. (credit: modification of work by NASA, P. Challis, R. Kirshner (Harvard-Smithsonian Center for Astrophysics) and B. Sugerman (STScI))arrow_forward
- The evolutionary track for a star of 1 solar mass remains nearly vertical in the HR diagram for a while (see Figure 21.12). How is its luminosity changing during this time? Its temperature? Its radius? Figure 21.12 Evolutionary Tracks for Contracting Protostars. Tracks are plotted on the HR diagram to show how stars of different masses change during the early parts of their lives. The number next to each dark point on a track is the rough number of years it takes an embryo star to reach that stage (the numbers are the result of computer models and are therefore not well known). Note that the surface temperature (K) on the horizontal axis increases toward the left. You can see that the more mass a star has, the shorter time it takes to go through each stage. Stars above the dashed line are typically still surrounded by infalling material and are hidden by it.arrow_forwardLook at the four stages shown in Figure 21.8. In which stage(s) can we see the star in visible light? In infrared radiation? Figure 21.8 Formation of a Star. (a) Dense cores form within a molecular cloud. (b) A protostar with a surrounding disk of material forms at the center of a dense core, accumulating additional material from the molecular cloud through gravitational attraction. (c) A stellar wind breaks out but is confined by the disk to flow out along the two poles of the star. (d) Eventually, this wind sweeps away the cloud material and halts the accumulation of additional material, and a newly formed star, surrounded by a disk, becomes observable. These sketches are not drawn to the same scale. The diameter of a typical envelope that is supplying gas to the newly forming star is about 5000 AU. The typical diameter of the disk is about 100 AU or slightly larger than the diameter of the orbit of Pluto.arrow_forwardPlace the following events in the formation of stars in the proper chronological sequence, with the oldest first and the youngest last. w. the gas and dust in the nebula flatten to a disk shape due to gravity and a steadily increasing rate of angular rotation x. a star emerges when the mass is great enough and the temperature is high enough to trigger thermonuclear fusion in the core y. the rotation of the nebular cloud increases as gas and dust concentrates by gravity within the growing protostar in the center z. some force, perhaps from a nearby supernova, imparts a rotation to a nebular cloud y, then z, then w, then x z, then y, then w, then x w, then y, then z, then x z, then x, then w, then y x, then z, then y, then w MacBook Air on .H. O O O Oarrow_forward
- Consider two different clusters with approximately the same turnoff luminosity. Cluster A has a main sequence 0.5 magnitudes bluer than cluster B. What property is different between clusters A and B? Explain the physical process that makes the stars of cluster A bluer.arrow_forward3) indicate which locations in the H-R diagram correspond to places where the evolution is slow. Answers should be in the order they occur in the star. For example, if, in order, E, I and A are locations where there is a long time between changes, then enter EIA. (HINT: There are exactly three of them Hint: Hint: Our sun will be stable for another 4 billion years and white dwarfs last a long time because they are small. Really good additional hint: There are 3 places where the evolution is slow. Info below is what each of the labels are. 1) red giant, helium flash A2) white dwarf F3) red giant with helium burning shell B4) hydrogen fusion in shell around core I5) helium fusion in core D6) envelope ejected, planetary nebula H7) main-sequence star C8) helium used up, core collapses G9) hydrogen used up, core collapses Earrow_forwardFinally estimate the lifetime of an M0 spectral type star if the total mass of the star is M = 0.51M⊙ , and it has a total luminosity L = 7.7× 10−2L⊙. Make the same assumptions as the previous two problems. How does your calculated Main Sequence lifetime for the M0 type star compare to the Main Sequence lifetime you calculated for the Sun?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning