(a)
Interpretation: Progressive decay series of Thorium-
Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include
Beta particle production decay involves the production of beta particle
A helium nucleus
(a)
Explanation of Solution
Alpha particle is emitted.
The parent nuclide is
Since, there is change of
(b)
Interpretation: Progressive decay series of Thorium-
Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include
Beta particle production decay involves the production of beta particle
A helium nucleus
(b)
Explanation of Solution
Beta particle is emitted.
The parent nuclide is
Since, there is no change in the mass number of the resultant nuclide; this indicates that the particle emitted is a beta particle.
(c)
Interpretation: Progressive decay series of Thorium-
Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include
Beta particle production decay involves the production of beta particle
A helium nucleus
(c)
Explanation of Solution
Beta particle is emitted.
The parent nuclide is
Since, there is no change in the mass number of the resultant nuclide; this indicates that the particle emitted is a beta particle.
(d)
Interpretation: Progressive decay series of Thorium-
Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include
Beta particle production decay involves the production of beta particle
A helium nucleus
(d)
Explanation of Solution
Alpha particle is emitted.
The parent nuclide is
Since, there is change of
(e)
Interpretation: Progressive decay series of Thorium-
Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include
Beta particle production decay involves the production of beta particle
A helium nucleus
(e)
Explanation of Solution
Alpha particle is emitted.
The parent nuclide is
Since, there is change of
(f)
Interpretation: Progressive decay series of Thorium-
Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include
Beta particle production decay involves the production of beta particle
A helium nucleus
(f)
Explanation of Solution
Alpha particle is emitted.
The parent nuclide is
Since, there is change of
(g)
Interpretation: Progressive decay series of Thorium-
Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include
Beta particle production decay involves the production of beta particle
A helium nucleus
(g)
Explanation of Solution
Alpha particle is emitted.
The parent nuclide is
Since, there is change of
(h)
Interpretation: Progressive decay series of Thorium-
Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include
Beta particle production decay involves the production of beta particle
A helium nucleus
(h)
Explanation of Solution
Beta particle is emitted.
The parent nuclide is
Since, there is no change in the mass number of the resultant nuclide. Thus, the particle emitted is a beta particle.
(i)
Interpretation: Progressive decay series of Thorium-
Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include
Beta particle production decay involves the production of beta particle
A helium nucleus
(i)
Explanation of Solution
Beta particle is emitted.
The parent nuclide is
Since, there is no change in the mass number of the resultant nuclide. Thus, the particle emitted is a beta particle.
(j)
Interpretation: Progressive decay series of Thorium-
Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include
Beta particle production decay involves the production of beta particle
A helium nucleus
(j)
Explanation of Solution
Alpha particle is emitted.
The parent nuclide is
Since, there is change of
(k)
Interpretation: Progressive decay series of Thorium-
Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include
Beta particle production decay involves the production of beta particle
A helium nucleus
(k)
Explanation of Solution
No particle is emitted.
The given species, that is
Want to see more full solutions like this?
Chapter 19 Solutions
Lab Manual For Zumdahl/zumdahl's Chemistry, 9th
- Pleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forwardThe Ksp for lead iodide ( Pbl₂) is 1.4 × 10-8. Calculate the solubility of lead iodide in each of the following. a. water Solubility = mol/L b. 0.17 M Pb(NO3)2 Solubility = c. 0.017 M NaI mol/L Solubility = mol/Larrow_forwardPleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning